APPENDIX C

Chapter 1, Architecture, Building and Site Condition Assessment and Design Recommendation Report
CHAPTER 1
ARCHITECTURE

Prepared by

IS Architecture
Table of Contents

I. **Introduction** .. 5
 A. Purpose of the Report ... 5
 B. Research Methodology and Report Organization .. 6
 1. Building Condition Assessment Report Outline .. 7
 2. Cardinal Directions Used in This Report .. 7
 3. Limitations to the Report and Recommended Further Studies 8
 4. Condition Assessment Standards .. 10
 5. Investigative and Photographic Process .. 10
 6. Recommended Preservation Treatment Approach .. 10

II. **Historical Background and Context** ... 12
 A. Historic Context ... 12
 1. Historic Context: Torrey Pines Mesa, La Jolla, California ... 12
 2. Historic Context: The Black Family and La Jolla Farms ... 14
 3. Historic Context: The University House at 9630 La Jolla Farms Drive 17
 4. Historic Context: William Lumpkins .. 21
 5. Historic Context: Tribal Cultural Values .. 23
 B. Building Chronology ... 25
 C. Historic Evolution of the University House ... 25
 D. Contextual Significance .. 27

III. **Physical Description** ... 29
 A. Overall Description and Dimensions .. 29
 B. Building Components ... 29
 1. Foundations .. 29
 2. Structural System ... 29
 3. Adobe Walls .. 29
 4. Exterior Paving Materials and Interior Flooring Materials 31
 5. Doorways and doors .. 33
 6. Windows .. 41
 7. Lintels .. 42
 8. Roof .. 43
 9. Fireplaces and built-in barbeque ... 45
 C. Exterior Description .. 47
 1. Walls .. 47
 2. Porches and Patios .. 55
 3. Chimneys ... 56
 4. Exterior Lighting .. 56
 D. Interior Description .. 58
 1. Floor Plans ... 58
 2. Stairways ... 63
Table of Contents

I. Design Recommendation Report (BSCA & DRR)

- Building and Site Condition Assessment and Table of Contents

II. IS Architecture 5649 La Jolla Blvd. La Jolla, CA 92037 858-456-8555 www.isarchitecture.com

III. UCSD University House Rehabilitation

Chapter 1: Architecture

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone, and Brick</td>
<td></td>
</tr>
<tr>
<td>2. Evaluating the Exterior Details</td>
<td>81</td>
</tr>
<tr>
<td>3. Architectural Materials and Craft Details</td>
<td>82</td>
</tr>
<tr>
<td>4. Composition and Organization of the Site Plan</td>
<td>83</td>
</tr>
<tr>
<td>5. Trim and Secondary Features or Decorative Scrollwork</td>
<td>84</td>
</tr>
<tr>
<td>Design Philosophy</td>
<td></td>
</tr>
<tr>
<td>7. Significance of Architectural Style and Architect's Design</td>
<td>86</td>
</tr>
<tr>
<td>Philosophy</td>
<td></td>
</tr>
<tr>
<td>8. Architectural Non-Contributing and Detracting Features</td>
<td>87</td>
</tr>
<tr>
<td>9. Site Plan and Massing</td>
<td>88</td>
</tr>
</tbody>
</table>

IV. Significance Evaluation

A. Significance of Architectural Style and Architect's Design Philosophy
B. Major Contributors to the Overall Visual Character of the Residence
 1. Floor Plan and Massing
 2. Roof and Roof Features
 3. Windows and Doorways
 4. Projections and Recesses; Porches or Arcades
 5. Exterior Materials, Color or Patterning
 6. Trim and Secondary Features or Decorative Scrollwork
 7. Composition and Organization of the Site Plan

C. Qualities and Workmanship of Exterior Surfaces
 1. The Building's Specific Materials: Adobe, Stucco, Wood, Stone, and Brick
 2. Architectural Materials and Craft Details

D. Evaluating the Interior
 1. Flooring
 2. Walls
 3. Doors and Wooden Lintels
 4. Windows
 5. Ceilings
 6. Tile
 7. Cabinetry
 8. Hardware
 9. Fireplaces

E. Architectural Non-Contributing and Detracting Features
 1. Non-Contributing Features
 2. Detracting Features

V. Condition Assessment
 A. Condition Assessment Terminology
 B. Architectural Condition Assessment
 C. Building Components
 1. Foundations
 2. Structural System
 3. Adobe Walls
 4. Exterior Paving Materials and Interior Flooring Materials
 5. Doors
Table of Contents

1. Windows ..90
2. Lintels ...90
3. Ceiling ...90
4. Roof ..90
5. Fireplaces and Built-in Barbecue..90
6. Exterior Description ..91
7. Walls ..91
8. Porches, Patios, Fences, Site Walls and Windscreens...93
9. Chimneys ..93
10. Exterior Lighting ..93
11. Condition Assessment of Interior ..93
 1. Residential South Wing..93
 2. Public West Wing ...95
 3. Service North Wing..95
12. Treatment Recommendations ..97
 A. Proposed Architectural Preservation Treatment Plan - Rehabilitation...97
 1. The Secretary of the Interior's Standards for Rehabilitation ...97
 2. Proposed Architectural Rehabilitation Designs ...100
 3. Site Sustainable Design Practices ..103
 B. Work and Maintenance Recommendations...105
 1. General Threats to the Structure’s Durability/Repairs ..105
 2. Preventative Maintenance ...120
 3. Other Interventions, Analyses, or Monitoring that may be Required or Desirable122
13. Works Cited ... 124
14. Appendices ... 126
 A. Preservation Brief 17………………………………………………………………………………127
 B. Preservation Brief 18………………………………………………………………………………143
 C. As Built Drawings…………………………………………………………………………………153
 D. Architectural Wall Sections..155
 E. Limited Archaeological Excavations..165
 F. Proposed Architectural Rehabilitation Designs ...167
 G. Historic Documentation – UCSD Archived Drawings..181
I. Introduction

A. Purpose of the Report

The University of California, San Diego requested an Executive Architect for the Rehabilitation for the University House, a 1952 one story adobe residence listed on the California Register of Historical Resources and the National Register of Historic Places. The property is recognized on the National Register as significant for Historic Architecture, work of a master architect, archaeology and tribal cultural associations (pending). The State of California has recognized the site as a Sanctified Native American Burial Ground. This property is owned and administered by the University of California, San Diego (UC San Diego) for use as the Chancellor’s Residence. On September 5, 2008, UC San Diego issued a “request for qualifications” for the University House, which is located at 9630 La Jolla Farms Road, IS Architecture submitted its qualifications on September 19, 2008 and was awarded the project on October 13, 2008. On March 24, 2009 our firm was “authorization to perform professional services” and we were issued our “authorization to employ sub-consultants” on April 23, 2009. This report represents the culmination of the initial research phase of the project. This report is organized as an expanded version of the “Building Condition Assessment Report Format” followed by the State of California Parks and Recreation Department. In addition to an assessment of the buildings condition and remedial recommendations the report also includes assessments regarding historic rehabilitation, geotechnical stabilization, landscape architecture, and building design recommendations for consideration in the schematic design phase of the rehabilitation project.

The purpose of the Building and Site Condition Assessment and Design Recommendation Report (BSCA&DRR) was to provide base line data to guide the future rehabilitation of the University House. The report focuses on identifying the historic character defining features and the condition of the building, and evaluation of its significance and integrity using the Secretary of the Interior’s Standards. The research, testing, and field examination for the report were completed over a period of months from November of 2008 to July of 2009. This report provides an analysis of the building’s current condition, including documentation of any damage or deterioration of materials. This BSCA&DRR provides an analysis of the building’s historical development, character defining features, historic fabric and historic significance, using the criteria of Secretary of the Interior’s Standards.

The BSCA&DRR also provides information related to the buildings’ structural and seismic characteristics. This report provides detailed treatment and work plans to guide future stewardship, use, repair and maintenance of the historic adobe building. The plans are designed to assure that both resource protection and operational needs are being addressed in manners that are consistent with the Secretary of Interior’s Standards for the Treatment of Historic Properties. All consultants were made aware of the status of the site as a Sanctified Native American Burial Ground. All consultants were requested to be cautious and severely limit any recommendations that may require ground disturbance.

The following professionals were chosen through a Request for Proposal process to prepare this report:
- Melvyn Green of Melvyn Green and Associates – Structural Engineer (MGE)
- Dr. Micah Hale of ASM Affiliates, Inc. and Carmen Lucas – Archaeology and Native American Monitoring (ASM)
- Scott Thoeny, G.E. and Sam Valdez, P.E., of TerraPacific Consultants, Inc. – Geo-Technical Engineers (TPC)
I. Introduction

Chapter 1: Architecture

B. Research Methodology and Report Organization

Ground Disturbance
The site is located on a coastal bluff with known instability issues, requiring a subsurface investigation to evaluate the geotechnical conditions as they relate to the slope/bluff. Two geotechnical borings were drilled to depths of 30 and 40 feet below existing surface. In addition, one three-foot diameter hole was excavated by geotechnical team crewmembers on the bluff face, at the base of the retaining wall. Knowing the extremely sensitive archaeological nature of the site each of these explorations were either overseen or executed by an archaeologist and a Native American monitor. In the area where the borings were drilled, the archaeologist pre excavated a 'unit' (one meter by one meter) until reaching an archaeologically "sterile" depth. Only then was the drill rig allowed to start drilling. Additional information regarding the process and the findings are included within the report prepared by Micah Hale, M.A., RPA of ASM Affiliates

Field Observation
- Extensive field observation visits were performed by all of the consultants on an as needed basis. (November 2008 through June 2009)
- Fireplace Restoration Specialist: Jim Crawford
- Selective Investigations: Steigerwald/Dougherty General Contractors, Eric Reynolds

Review of Reports Provided by UC San Diego
- Limited Fungal Contamination Report, CSC Project No. 11001031, by Jason Ziswasser CMC, CSST, CDPH I/A, Clark Seif Clark, Inc., May 21, 2009
- Lead-Based Paint Inspection Report, CSC Project No. 11001031, by Jason Ziswasser, CDPH Inspector/Assessor, Clark Seif Clark, Inc., May 21, 2009
- Limited Asbestos Survey Report, CSC Project #: 11001031, by Jason Ziswasser, CSST, Clark Seif Clark, Inc., May 21, 2009
Report Organization
This report has been organized in the “Building Condition Assessment Report Format” provided to the consultant by the State of California Parks and Recreation Department.

1. Building Condition Assessment Report Outline
 a) Introduction: Summary of study location, objectives, methods and results.
 b) Historical Background and Context: Narrative summarizing the building’s chronology, construction history, later developments and modifications, and past and current uses. Identify previous historical, architectural and archaeological investigations and restoration efforts.
 c) Physical Description: Describe all major elements, materials, and spaces of the building, with particular emphasis on identifying their origin, age and integrity.
 d) Significance Evaluation: Identify building features deemed to be significant; describe the considerations involved in making those determinations. Identify the character defining and historically significant period(s) represented by those features and the building as a whole.
 e) Condition Assessment: Describe the current condition of building materials, elements and systems and the causes of deterioration observed. Summarize materials testing, analysis, and results.
 f) Treatment Recommendations: Recommend treatment(s) (preservation, rehabilitation, restoration, or reconstruction) that are compatible with the historic preservation and operational/use objectives. Describe the rationale for the recommended treatment plan.
 g) Work and Maintenance Recommendations: Recommend and suggest priorities for tasks needed to realize the proposed treatment plan to meet the long-term resource protection and operational needs of the structure. Identify repairs, preventive maintenance and any other interventions, analyses or monitoring that may be required or desirable. Identify and evaluate alternate solutions as appropriate.
 h) References Cited
 i) Appendices (including technical reports of test results)

2. Cardinal Directions Used in This Report
The University House site is situated almost exactly on “true north”. La Jolla Farms Road forms the north boundary edge and the bluff slope the south portion of the property. The side property
lines abut neighboring properties to the east and west. Since the residence was built relative to the bluff edge compass orientation can be used in identifying features. However due to the obtuse “U” shaped plan some uniform descriptive markers need to be established. Therefore, when describing the larger components of the structure the report will refer to the:

- South Residential Wing: encompassing the primary private residence, library and living room.
- West Public Wing: includes the dining room, reception room, servery, commercial kitchen and basement laundry and mechanical rooms.
- North Service Wing: includes the indoor barbeque room, pantry, guest suite, maid’s rooms and garage.
- Inner Courtyard
- East and West Bluff Edge Patios

Elements or elevations in this report will be referred to by either their compass direction or when needed as oriented relative to landmarks on the site such as, bluff side, inner courtyard side, pool side or street side.

3. Limitations to the Report and Recommended Further Studies

This was a low invasive investigation that relied on previous invasive investigation findings. Therefore, some hidden issues may not have been identified in this report. Of particular concern are areas that could not be accessed or disturbed to view both structural connections and deterioration of the buildings components. Primarily, there are many paths for termites to enter the wooden roof support system. The report however does foresee such eventualities and has outlined the general guidance needed to approach such conditions.

The prior report UCSD University House Renovation Investigative Study, May 25, 2004 was a highly invasive study. Rather than repeat their destructive testing this BSCA and several of the sub-consultant’s reports rely on their condition findings but have provided our own recommendations.

Given some budget constraints on the report, priority was given to assessing the physical and structural condition of the structure, as well as, the geotechnical and hydrological issues confronting the bluff slope. Therefore, some aesthetic issues were postponed from this report; art conservation, historic paint analysis, and interior design. These consultants plan to be included within the schematic design phase of the project. Of particular concern is preparing:

1) A historic paint analysis to identify historically appropriate paint schemes.

2) A furniture inventory to identify any historically significant furniture or art work for re-inclusion at the residence. For example, the entry hall niches each held a “Santos” sculpture that is currently in storage. These elements need to be identified and if needed special accommodations designed for each piece of art work.

3) Art conservation for several elements incorporated in the building.
 a) Wall mural
 b) Stained glass window
 c) Mexican glass bell
 d) Wall tile mural
 e) Wall mounted painting
 f) Octagon courtyard tile medallion
 g) Tile interior features
Figure 1: Map of University House showing "true north", the building's wings and the landmark features.
4. **Condition Assessment Standards**
 For this report the following assessments were used; “good”, “fair”, and “poor”, with the elaboration of “good to fair” and “fair to poor.”

 The terminology has the following definitions:
 - **Good**: building component needs only minimal attention as would be expected with routine maintenance.
 - **Fair**: building component needs some intervention or replacement of parts.
 - **Poor**: building component needs substantial intervention or major replacement, possibly near failure or usefulness.

 The use of “good to fair” (“fair to good”), and “fair to poor” (“poor to fair”) are used when the condition falls somewhere between the primary three descriptive terminologies. If a building component shows some evidence of deterioration that may suggest further deterioration in inaccessible areas, a professional assessment was made that the hidden area must be assumed to also have some deterioration.

5. **Investigative and Photographic Process**
 The building was photographed during almost every site visit of the architectural team and during the structural engineering assessment, Geotechnical exploration, Archaeological subsurface investigation, Mechanical, Electrical and Plumbing (MEP) assessment and the fire suppression and security assessment.

6. **Recommended Preservation Treatment Approach**
 As per The Secretary of the Interior’s Standards for the Treatment of Historic Properties, and after reviewing this resource, a rehabilitation approach to the structure is recommended.

 “”Rehabilitation” is defined as "the process of returning a property to a state of utility, through repair or alteration, which makes possible an efficient contemporary use while preserving those portions and features of the property which are significant to its historic, architectural, and cultural values.””

 The Secretary of the Interior’s Standards for Rehabilitation
 “The Standards (Department of Interior regulations, 36 CFR 67) pertain to historic buildings of all materials, construction types, sizes, and occupancy and encompass the exterior and the interior, related landscape features and the building’s site and environment as well as attached, adjacent, or related new construction. The Standards are to be applied to specific rehabilitation projects in a reasonable manner, taking into consideration economic and technical feasibility.

 1. A property shall be used for its historic purpose or be placed in a new use that requires minimal change to the defining characteristics of the building and its site and environment.

 2. The historic character of a property shall be retained and preserved. The removal of historic materials or alteration of features and spaces that characterize a property shall be avoided.

 3. Each property shall be recognized as a physical record of its time, place, and use. Changes that create a false sense of historical development, such as adding conjectural features or architectural elements from other buildings, shall not be undertaken.
4. Most properties change over time; those changes that have acquired historic significance in their own right shall be retained and preserved.

5. Distinctive features, finishes, and construction techniques or examples of craftsmanship that characterize a property shall be preserved.

6. Deteriorated historic features shall be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature shall match the old in design, color, texture, and other visual qualities and, where possible, materials. Replacement of missing features shall be substantiated by documentary, physical, or pictorial evidence.

7. Chemical or physical treatments, such as sandblasting, that cause damage to historic materials shall not be used. The surface cleaning of structures, if appropriate, shall be undertaken using the gentlest means possible.

8. Significant archaeological resources affected by a project shall be protected and preserved. If such resources must be disturbed, mitigation measures shall be undertaken.

9. New additions, exterior alterations, or related new construction shall not destroy historic materials that characterize the property. The new work shall be differentiated from the old and shall be compatible with the massing, size, scale, and architectural features to protect the historic integrity of the property and its environment.

10. New additions and adjacent or related new construction shall be undertaken in such a manner that if removed in the future, the essential form and integrity of the historic property and its environment would be unimpaired. “

Close examination of the buildings construction history and extant materials and features leads to the recommendation that the building can be rehabilitated to serve as both the Chancellors private residence and as a public reception forum for members and friends of the University. A substantial portion of the original Black Residence period remains with only three large scale additions to the original footprint.
II. Historical Background and Context

When considering recommendations for the rehabilitation of a historic resource the resource can not be viewed in a vacuum. Rather the recommendations for the resource must be reviewed with in the historic contexts associated with the resource. The following four context statements excerpted from, University of California, San Diego, University House, 9630 La Jolla Farms Drive, Historic American Building Survey, La Jolla, San Diego County, California, Compiled by ASM Affiliates, 2008 apply to the University House. 1) Torrey Pines Mesa, 2) The Black Family and La Jolla Farms, 3) The University House at 9630 La Jolla Farms Drive and 4) William Lumpkins, Architect. A fifth historic context 5) Tribal Cultural Values has been recently approved by the State Office of Historic Preservation as part of an amended National Register Nomination and is pending the signature of the keeper.

A. Historic Context

1. Historic Context: Torrey Pines Mesa, La Jolla, California

The first coastal occupants in the La Jolla area were nomadic peoples that exploited coastal and inland resources of plants, animals, shellfish, and fish. At least two major cultural traditions, the Early Period (Archaic), which occurred 9,000 to 1,300 years ago, and the Late Period (Late Prehistoric), which covered the period from 1,300 years ago to Spanish Contact, have been recognized within the area. The history of the European presence begins in 1542, when Juan Rodriguez Cabrillo explored the coast of New Spain (as California was then called) and landed at the harbor of San Diego. European explorers returned to the area in 1602, but Spanish colonization of San Diego did not occur until 1769 with the arrival of the Portolá expedition and the establishment of the San Diego Presidio and the Mission San Diego de Alcalá.

Over the next century, as California passed from Spanish to Mexican to American rule, the tiny settlement steadily grew to form the nucleus of what is now modern San Diego. As late as 1887 the fledgling community of La Jolla was geographically isolated from urban San Diego and almost completely undeveloped. The community of La Jolla was founded on portions of San Diego’s “Pueblo Lands,” the area that the Mexican government set aside in 1835 and surveyed in 1845 for the development of a townsit. Frank T. Botsford, widely considered to be one of the founders of La Jolla, came to the area in 1886 in search of coastal territory available for potential development. The land that he purchased would eventually comprise what would be referred to as “the village” of La Jolla. Botsford soon formed a partnership with George W. Heald and together they worked to subdivide and market their holdings. The first buildings erected in La Jolla were the La Jolla Park Hotel and five associated cottages. Botsford and Heald both built homes for themselves and other landowners gradually did the same along the flatter land of the village area. La Jolla soon became known as a resort village as well as an artists’ enclave, attracting many authors, poets, artists, and musicians.

The small village of La Jolla developed slowly but steadily in the decades following its establishment. The San Diego, Old Town and Pacific Beach Railway extended a line to La Jolla in March of 1894, an improvement that helped bring people to the small town. The railroad company also helped promote tourism in La Jolla, first constructing “Devil’s Slide,” a flight of steps that led down a steep slope where abalones could be gathered during low tide, and later a lavish dance pavilion near the shore. The dance pavilion was dismantled in 1907 and much of the wood was used in the construction of the Cabrillo Hotel in La Jolla. One early pioneer, Anna Held, moved to the area in 1897. Held had been the nanny of
Ulysses S. Grant, Jr., son of President Ulysses S. Grant. She purchased a plot of land near the Cove of La Jolla and built a rock fireplace on the property; she later built a house around it. Held purchased additional lots above the cove and erected small cottages that came to be known as the Green Dragon Colony.

A major contributor to the cultural and academic growth of the community after the turn of the century was the San Diego Marine Biological Station, which eventually became the Scripps Institution of Oceanography of the University of California. Ellen Browning Scripps and her brother, E. W. Scripps, funded the first building on the site, the George E. Scripps Memorial Laboratory, in 1910. The Scripps family came to La Jolla in 1896, bringing with them their fortune from the Scripps Publishing Company. Ellen Browning Scripps was an active philanthropist whose donations helped support the Scripps Memorial Hospital, the Children’s Pool below Casa de Mañana, the athletic field stadium at La Jolla High School, the La Jolla Library, and Torrey Pines Park.

La Jolla remained a relatively small and isolated community through the 1920s, and the surrounding rugged coastal cliffs and mesas were almost entirely undeveloped. Torrey Pines Mesa, a plateau of coastal land located north of La Jolla Village and the location of the La Jolla Farms subdivision and the University House, was no exception. Substantial growth in this area came well after the build-up of the Village, although some isolated developments such as the Scripps Institution, Torrey Pines State Reserve, and Camp Matthews were founded during the early 1900s. The latter, a Marine Corps reservation, was established in 1917 and remained active until it was decommissioned in the early 1960s. The University of California acquired the former camp in about 1964 and it formed the core of the new university campus. Another military establishment, Camp Callan, was established on Torrey Pines Mesa in January 1941 on the eve of the United States' entry into World War II. This camp, an Army coast artillery training center, was located on the site of the present Torrey Pines Golf Course. During the war, Camp Callan was considered the “country club of the Army” because of its beautiful locale. The Army closed the camp in 1946 following the end of hostilities, but many of the camp’s former occupants decided to remain in the area after their stint with the military.

Mirroring nationwide trends, much of the suburban development of La Jolla was largely a postwar phenomenon. During the 1950s and 1960s especially, several new subdivisions and housing developments were created in the areas surrounding La Jolla, mostly in the hills to the east and along the Torrey Pines Mesa to the north. Local newspapers from the period frequently advertised new area developments such as “La Jolla Shores Heights,” “Muirlands Vista,” “Azure Coast Estates,” and “La Jolla Farms Estates,” the latter being the subdivision in which the University House is located. Most of these were upscale subdivisions featuring architect-designed and custom homes. For two decades immediately following the war, high housing prices in La Jolla generally excluded people of lower incomes. This situation was alleviated somewhat during the mid 1960s with the establishment of the UCSD campus and the construction of affordable student housing, but the area retains an air of exclusivity to this day.

Perhaps the single most important factor in the post-war development of the Torrey Pines Mesa and surrounding acreage was the development of the new UCSD general campus during the 1960s. University officials selected the location of the new campus in May of 1959 and began construction in 1961. The fledgling university expanded at a blistering pace throughout the 1960s and into the 1970s, continually adding new acreage and infrastructure.
As the University grew, so did the surrounding neighborhoods. The once bucolic and sparsely populated Torrey Pines Mesa was rapidly developed from the 1960s on. Today the area surrounding the UCSD campus is almost completely built up with office parks, retail establishments, and residential tracts, including the La Jolla Farms neighborhood.

2. Historic Context: The Black Family and La Jolla Farms

Known as “Bill” to his friends, William H. Black was born in Paris, Texas, in 1898 and spent most of his childhood in Louisiana. He entered the oil business in about 1917, and as a partner in the Black-Marshall Oil Company he soon earned a fortune in the oilfields of Kansas, Texas, New Mexico, and Oklahoma. In 1921, Black’s family moved to Los Angeles, and although it is unclear whether William Black moved to California with them, he developed an affinity for Southern California in the early 1920s. He moved to San Diego in 1922 or 1923 to pursue real estate development and other ventures. Black’s good fortune faltered on the eve of the Great Depression and he lost much of the financial worth he had accrued through his real estate dealings in San Diego. Black left San Diego in 1929, shortly after the stock market crash, to engage in a variety of business ventures throughout the southern and southwestern United States. William Black’s Depression-era business ventures took him as far afield as New Orleans, Oklahoma City, Wichita, and Santa Fe. It was also during this time that he met Ruth, who was born in Guthrie, Oklahoma, around 1902. They were married in 1933 in Arkansas City, Kansas.

In 1937 he, with his wife Ruth, returned to La Jolla and purchased a home; however, they did not permanently reside in La Jolla until a decade later. The Blacks made New Mexico their permanent residence during the late 1930s and the better part of the 1940s. The couple owned and operated a cattle ranch there, as well as a 1920s-era “Southwestern” style adobe home in Santa Fe. It seems that a major factor delaying the Blacks from permanently returning to La Jolla was their desire to acquire a large tract of ocean-side land known as the Scripps Biological Cliffs. He first visited and fell in love with the property during the 1920s when he was a frequent hunting guest of Fred Scripps, the parcel’s owner. The property at that time was completely undeveloped and Scripps used it primarily as his private hunting reserve. The parcel came on the market after Scripps’ death, but Black failed in an attempt to purchase it at that time. Black’s patience and persistence eventually paid off, and in 1947 the 248-acre property came on the market once again and Black was able to secure it with cash.

Almost immediately after the purchase, the Blacks renamed the property “La Jolla Farms” and began developing it as a horse ranch. Like many affluent Californians of the 1940s, the Blacks developed a fascination with thoroughbred racing and began their own breeding program in hopes of siring champion racehorses. Initial development of a stables and training complex, known as “Black Gold Stables,” began in 1948 and continued into 1949. The stables complex, which occupied the eastern edge of the property near what is North Torrey Pines Road today, was designed in the “old western fort type of construction.” In practice, this translated to buildings constructed primarily of adobe with red tile floors and roofs. The complex included a 22-stall horse barn, a trainer’s house, a large feed barn, a half-mile training track complete with starting gates, and a polo field. Construction of the La Jolla Farms Clubhouse, a Spanish Revival building with red tile roof, began in 1949 and the Blacks acquired racing horses shortly after.

In the spring of 1949, the development of the La Jolla Farms property garnered a lengthy feature article in one of the major local newspapers, the La Jolla Journal. It was about this time that the Blacks decided to subdivide their property along the bluffs into four or five
residential sites. The lots were not made available to the public, but instead were to be offered exclusively to friends and acquaintances with the proviso that the homes must be valued at no less than $100,000. The Blacks reserved a choice lot for themselves, located at the southwestern corner of the planned subdivision. This lot was at the edge of the mesa and became the dramatic site for their personal residence. In May of 1949, when the feature article was published, the planned residence was still in its conceptual stage and the Blacks had not yet decided when to start building. As mentioned above, William and Ruth Black lived in a 1920s-era adobe home designed in the “Southwestern” style while in Santa Fe. The house was probably in the Pueblo Revival style, which was immensely popular in New Mexico during the 1920s and 1930s and continues to be the dominant residential style. It was this residence that served as inspiration for the design of their La Jolla Farms home and led the Blacks to hire Santa Fe architect William Lumpkins to design a Pueblo Revival style mansion for the La Jolla Farms lot. Lumpkins, a master of the style and prolific designer of residences in Santa Fe, was well suited for the task. He drew up the plans for the house in November 1949. In typical Lumpkins’ fashion, he named the residence “Hacienda Nuevo Mejico por Sr. y Sra. William Black” following Spanish naming conventions. Construction of the sprawling adobe mansion began in 1950 and was finished by Rancho Santa Fe contractor Howard Stein Winter in 1952.

The Blacks’ first attempt to subdivide their La Jolla Farms property was met with limited success. In the years following the completion of their residence in 1952, it appears that just one or two of the “view estates” lots had been developed. Their next subdivision endeavor began in 1956 when the Blacks, in partnership with Andrew Andeck, a real estate developer in La Jolla, redesigned La Jolla Farms as a new development of 62 one- and two-acre “palisades” lots. Black and Andeck had a new, curvilinear street pattern graded in 1956, replacing the former rectilinear grid plan that abutted the stables area to the east and the southern boundary of Torrey Pines City Park to the north. The new street pattern, essentially the same as the current layout, was a lasso-shaped loop formed by La Jolla Farms Road and Black Gold Road. The subdivision also included four cul-de-sacs: Brookmead, Crown Crest, Greentree, and Idle Hours lanes. As advertised in the October 25, 1956, edition of the La Jolla Journal, the purchase of one of the “La Jolla Farms Club Estates” parcels included membership in the La Jolla Farms Beach and Bridle Club, which included the use of the polo grounds and stables. Members also had exclusive access to the beach below the Blacks’ property, Torrey Pines Beach (later known as Black’s Beach).

Despite these enticements, this second attempt to develop La Jolla Farms was not immediately successful. Nevertheless, the venture was not a failure and it did attract a handful of buyers within its first year and steadily grew over the next decade. By 1964, about half of the parcels had been purchased by individual parties, about one-third were held by the Security Trust and Savings Bank or Security First National Bank, and the rest (a little more than 10 percent) were owned by the Blacks. During the period that William Black lived in his La Jolla Farms home, from about 1952 through the spring of 1967, he was ostensibly retired from the world of finance. This claim notwithstanding, he remained very active in the San Diego and La Jolla business communities and continued to develop real estate in southern California. In the mid 1950s, he was instrumental in developing the resort community of Borrego Springs, located approximately 100 miles east of San Diego, where he maintained a second home. In the late 1950s and early 1960s, he was listed in San Diego city directories as the president of the Colonial Hotel Corporation of La Jolla, and by 1962, he
had become the director of the San Diego Transit System¹. … He later served on the board of directors of the City Bank of San Diego and Security First National Bank in San Diego. Black was also president of the Landowner’s Oil Association, a position he held until his death in 1967. He suffered a fatal heart attack on the Beach and Tennis Club golf course in La Jolla on July 4 of that year. Shortly after [before – IRS] William Black’s death, the family sold their house at 9630 La Jolla Farms Drive to UCSD.

¹ He also served on the boards of San Diego & Coronado Ferry Co., California Motor Express, Harbor Insurance, and Metropolitan Coach Lines (L.A.).
3. Historic Context: The University House at 9630 La Jolla Farms Drive
(While this context is not currently included within the National Register Nomination the history associated with this context has directly affected the resource and therefore has been included.)

On March 2, 1967, the University of California announced that it had purchased 130 acres of the La Jolla Farms property from William and Ruth Black. The $2.7 million purchase comprised the bulk of the La Jolla Farms lots; including the Black Gold Stables and Lot 14, the Blacks’ residential lot at 9630 La Jolla Farms Road. Almost immediately after completion of the sale, the Blacks moved out of the residence to the Seville Apartments in La Jolla where Ruth lived the remainder of her life. Later that spring, the University renamed the property “University House” and put it to use as the official chancellor’s residence and public events venue. Under the ownership of UCSD, the University House underwent its most significant alterations, including the construction of an exterior wall enclosing the south side portal on the residential wing, forming an interior “gallery” in 1969; a family room that was constructed in 1969 and extended in 1973; and a dining and reception room addition on the west side of the building in 1985-86.

Below is a timeline of the UCSD Chancellors who occupied the University House between 1967 and its closure in 2004, followed by a more in-depth history on each occupant:

- John Galbraith (1967-1968)
- William David McElroy (1972-1980)

John Galbraith, UCSD’s second Chancellor, was the first occupant of the University House, but only lived there for the last year of his term. He chaired the UCLA department of history from 1954 to 1958 and headed the southern branch of the University of California’s academic senate from 1962 until his arrival in San Diego. Galbraith focused on the development of the humanities holdings of the campus library during his chancellorship. John Galbraith resigned in 1968 after dealing with considerable unrest resulting from the nationwide movement of student activism related to, among other things, the civil rights movement, the Cold War, and the Vietnam Conflict.

William McGill was set to become the next chairman of the Academic Senate when he instead took over the position of Chancellor following the resignation of John Galbraith. Graduating from Fordham and later earning his Ph.D. in experimental psychology from Harvard, McGill then became a junior member of a World War II team that fused nuclear weapons research with that of cryptography and created the “thinking machine” or digital computer. Politically conservative, McGill had little patience for debate and found his greatest adversaries on campus to be the students themselves. His inauguration was a quiet affair, as was his resignation, and he came to believe that his troubled years at UCSD helped prepare him for the difficult decade ahead at Colombia University.
UCSD’s first Chancellor, Herbert F. York, served from 1961-1964, and again as Acting Chancellor from 1970-1972. Herbert York resided at University House during his second term as Chancellor. York participated in the Manhattan Project during World War II. After the war he received his doctorate in physics from the University of California, Berkeley, and then worked and later headed weapons development at the Lawrence Livermore Laboratories. In the late 1950s, he became research director for the Institute of Defense Analyses, and chief scientist of the Advance Research Projects Agency of the Office of the Secretary of Defense. Shortly after these appointments he was named Eisenhower’s director
of research and engineering for the Defense Department. Herbert York began the task of assembling a full-service undergraduate school, which required York, a physicist, to hire faculty in mathematics, the fine arts, humanities and social sciences. Ultimately, the York-era plan grafted a student-centered system onto a faculty-centered institution, although after three years of organizational challenges, he resigned his post in 1964. York returned as Acting Chancellor in 1970s, after the resignation of Chancellor McGill. This time York felt his more liberal ideology was appreciated, as was his mission of transitioning the university away from militarily funded classified research. He sought the position of Chancellor again in 1971 but the Regents selected William McElroy.

William David McElroy, biologist and director of the National Science Foundation, became Chancellor in July 1971. McElroy earned a doctorate from Princeton in 1943 and spent two years in the Office of Scientific Research and Development before moving on to John Hopkins University after the war, where he became chairman of the biology department in 1956. McElroy's chancellorship focused on garnering support for the sciences during a time of drastically reduced budgets. He also led the campus during a time when the UCSD medical school's directives, specifically practice versus research, were being debated. Division between the Chancellor’s office and the faculty finally resulted in McElroy’s resignation in 1979.

Richard Atkinson was world-renowned in the field of experimental psychology by the time he became Chancellor in 1980. He earned master’s degrees at Indiana University in mathematics and psychology, joined the UCLA faculty in 1957, and moved on to Stanford in 1961. He was co-author of *Introduction to Psychology*, a popular psychology textbook now in its fourteenth edition. Atkinson reorganized the UCSD chancellorship by creating the Vice Chancellor position to handle budgetary issues and Associate Chancellor position to act as a faculty member liaison to represent faculty concerns. He also funded the offices of the deans in arts and humanities, natural science, and social sciences to bring them in line with deans of graduate studies and the School of Engineering. Atkinson’s chancellorship was successful and upon his retirement from the position, he became President of the University of California, a post he held from 1995-2003.

Robert C. Dynes was a renowned physicist and an expert in semiconductors and solid-state circuits when he was named Chancellor in 1996. He was the last Chancellor to reside at University House. He received his bachelor's degree in mathematics and physics from the University of Western Ontario, and master's degree and Ph.D. in physics from McMaster University. Dynes was a research scientist for AT&T Bell Laboratories from 1968 to 1990 before coming to UCSD as a physics professor. He was appointed senior Vice Chancellor for academic affairs at UCSD in 1995 which he served until he was selected the 18th President of the University of California system in 2003. In August 2007, Dynes announced his intended retirement from the Office to order so that he could return to his former teaching position in 2008.

Figure 6: Aerial view post 1973 and pre 1985.
4. **Historic Context: William Lumpkins**

William Lumpkins designed the building that became the University House as a Pueblo Revival style residence for William and Ruth Black. This style initially developed in southern California about the turn of the century, but in the ensuing decades the form became far more popular throughout Arizona and New Mexico. The style is based on Native American Pueblo architecture found in the American Southwest, but also blends in influences of the more recent Spanish Colonial style. The style reached its peak of popularity in the 1920s and 1930s, especially in Santa Fe and Albuquerque, where its influences still predominate in the architecture of that region. The Pueblo Revival style's character-defining features include a flat roof with parapet; walls and parapets with rounded edges and corners; projecting wooden roof beams, or vigas, that often project through the wall; and stuccoed wall surfaces. Pueblo Revival buildings are frequently constructed of adobe, but not necessarily so. Other common embellishments include exterior arcades, called portales, lined with wood columns capped with handcrafted corbels; brick or flagstone floor surfacing; interior corner fireplaces, and decorative ironwork.
William Lumpkins was a prolific artist and architect who engaged in a wide variety of occupations throughout his long life, and it would not be an exaggeration to characterize him as a “Renaissance Man.” He is believed to have designed more than 2,000 buildings throughout New Mexico and in the La Jolla area. Lumpkins was born in 1909 on a ranch near Clayton, New Mexico. He began his first vocation, as an artist, in the mid 1920s producing landscape paintings of southeastern New Mexico. He did not start his formal training as an artist until 1929 at the University of New Mexico. Although his painting career spanned his entire lifetime, it was at the University of New Mexico that Lumpkins began his second career as an architect. Later, he studied architecture at the University of Southern California, and although he completed his studies in 1934, he fell short of earning a degree. In 1935, shortly after returning to Santa Fe, Lumpkins was hired as an artist for the New Deal Art Program, a Civil Works Administration program that employed 162 New Mexico artists during the Depression. The artists collectively created hundreds of murals, paintings, sculptures, pottery pieces, woodcarvings, and furniture pieces that were used to decorate public buildings. It was also about this time that Lumpkins established a successful private architectural practice where he focused on Pueblo Revival residential designs. Lumpkins’ career as both painter and architect was briefly interrupted as he joined the service during World War II, where he served as a flight instructor. Following the war, he returned to Santa Fe where he continued designing residential buildings. It was during this period, from the mid 1930s through the better part of the 1940s, that Lumpkins became a master of the Pueblo Revival style. In 1946, he published his first book on the style, *Modern Spanish-Pueblo Homes.* This work presented his ideas about residential design, specifically Pueblo Revival homes.

In 1949, on the heels of the publication of *Modern Spanish-Pueblo Homes*, he designed William and Ruth Black’s residence, one of his grandest Pueblo Revival residential designs. Lumpkins moved to La Jolla in the early 1950s where he established a successful architectural firm. Once in California, it appears that Lumpkins totally abandoned the Pueblo Revival style. His known works in and around La Jolla (with the obvious exception of the Blacks’ residence, which he designed a few years earlier in Santa Fe) are evenly split between residential and civic or commercial. The residences were largely single-story, wood frame Ranch Style buildings that were handsome and functional, but not exceptional. His own home was built on a rugged hillside of Castellana Road in La Jolla and is an International Style-influenced building with numerous windows to capture the dynamic view. His public and commercial work in La Jolla was widely varied, ranging from the Mediterranean Revival addition he designed for the Athenaeum at 1008 Wall Street, to the modern-influenced office buildings he designed and which his firm occupied at 7723 Fay Avenue. Lumpkins’ abandonment of the traditional Pueblo Revival style during his La Jolla years may have been as much a function of geography and the tastes of his clients as it was a shift in his personal preferences. In 1946, not long before leaving Santa Fe, Lumpkins wrote, “Any architectural type which becomes frozen and static ceases to be architecture. The form of the building must meet the needs of the people, the social order, the climate and the local material.” This passage reflects his motivations as an architect who worked, in part, to satisfy the desires of the client. In Santa Fe, his mastery of the Pueblo Revival style was undoubtedly influenced by its popularity, which peaked in New Mexico during his formative years of the 1930s. In turn, his post-war body of work in La Jolla reflects broad architectural trends in California, where the popularity of traditional styles such as Mediterranean Revival

2 William Lumpkins, *Modern Spanish-Pueblo Homes* (Santa Fe: n.p., 1946.)
and Spanish Colonial Revival was waning as International Style and modernistic influence gained prominence. In the residential sphere, Lumpkins’ La Jolla designs tended toward the Ranch Style, one of the most abundant post-war residential styles in California. His commercial works were more modern, also reflecting broad regional trends.

In 1965, Lumpkins briefly returned to New Mexico for a vacation from his hectic schedule. Perhaps it was this trip, or perhaps it was his divorce in the early 1960s (or a combination of the two), that precipitated his departure from La Jolla in 1967. Lumpkins returned to New Mexico to embark on a new phase of his career: designing and promoting passive solar homes. Very early in his career as an architect, and more than thirty years before returning to Santa Fe from La Jolla, Lumpkins had already begun to experiment with passive solar adobe designs. He designed his first passive solar home in 1935, a residence located near Capitan, New Mexico. Indeed, the vast majority of his Pueblo Revival residences from the 1930s and 1940s incorporated basic tenets of passive solar design such as the use of thick adobe walls, site placement so that the longest façade faces south, and the inclusion of large picture windows on the southern façade. Lumpkins curtailed his architectural career somewhat after returning to Santa Fe in 1967, but still worked on some high-profile commissions in and around Santa Fe. Among his more notable commercial designs from the period are First Northern Plaza, De Vargas Center, parts of the Inn at Loredo and Rancho Encantado, and sections of La Fonda Hotel, including the ballroom that bears his name. (ASM)

5. Historic Context: Tribal Cultural Values

The archaeological site known as SDM-W-12 is located on the level portion of the property and on the upper bluffs, as it has eroded over the past 10,000 years. However, archaeological investigations during the early and mid-20th century, and more recent investigations associated with the current project, including ground penetrating radar and canine forensics, indicate that artifacts and features are still present on the property. Site W-12 is located in Kumeyaay traditional territory, and from the Native American perspective, this area has been occupied by the Kumeyaay since the beginning of time. Modern Kumeyaay websites (e.g., Viejas and Sycuan) show this part of the coast as part of their traditional territory. The Chancellor's House property is significant to the modern Kumeyaay because it is a coastal site of great antiquity that represents their people’s ancient and traditional association with this area. Kumeyaay legends and beliefs indicate a traditional and ancient connection to the ocean. The property is also significant to the Kumeyaay because it contains the remains of ancient ancestors and associated grave goods.

The Native American Heritage Commission (NAHC) in 2008 determined the property to be an ancestral Sanctified Cemetery under state law (Public Resources Code 5097.97) based in part on testimony presented by Kumeyaay representatives and scholars (Myers 2008). The Kumeyaay Cultural Repatriation Committee (KCRC) has been identified as the Most Likely Descendant for the property by the NAHC which requires consultation with KCRC and appropriate treatment of ancestral human remains.

In spite of more than 18,000 archaeological sites being recorded in San Diego County, very few have been assessed for National Register eligibility and only a handful have been either determined eligible for listing or actually listed. Moreover, because of the density and intensity of modern development along the Southern California coast, many archaeological sites have been lost, further increasing the significance of this property.

Site W-12 has been determined eligible under National Register for Historic Places criteria by the
California Office of Historic Preservation both for its contemporary tribal cultural associations with the Kumeyaay (Criterion A) and as an archaeological site that contains important information about the early occupation of coastal North America (Criterion D).

Criterion A: Site is associated with events that made a significant contribution to the broad patterns of history. The Chancellor's House property is eligible under Criterion A because it is associated with events that have made a significant contribution to the broad patterns of American history. According to National Register Bulletin 15, an archaeological site can be eligible under Criterion A if it has traditional cultural value. Properties may have significance under Criterion A if they are associated with events, or series of events, significant to the cultural traditions of the community (for W-12, the local Indian community). In the case of W-12, its contemporary tribal cultural associations with the Kumeyaay include that: 1) it is a coastal archaeological site of great antiquity and represents their people's ancient and traditional association with the Pacific Ocean and coast, and 2) it contains the burial remains and associated grave goods of ancient ancestors which have great cultural value to present-day tribal peoples.

Modern Kumeyaay feel directly associated with the many ancestors buried at and historically removed from W-12, despite the great antiquity of the site. In fact, its great age increases the significance of the site to the Kumeyaay, since it is consistent with their belief that they have been in the region since the beginning of time. The property remains an important place of sacred values to the Kumeyaay and a direct link to thousands of years of Indian life and culture. For the Kumeyaay, the property has intrinsic heritage values to present-day tribal people. Because of this connection, it is the tribal perspective that the property must be treated with respect and honor. The Chancellor's House property retains integrity to convey both tribal cultural and archaeological values.

Location
The property retains its integrity to convey tribal traditional cultural associations with the Pacific Ocean. The property itself, with the exception of the structure, is largely open. The views from the property southwest to the ocean, of the coastal canyon below it and across to the neighboring mesa to the south (which also contains an archaeological site) are still unspoiled and provide context for the property under this criterion. "One could ask why this location? Could it be the high cliffs, could it be the view to the south and understanding that the coastline as far as the eye can see holds the ancestral homes of the Indian people of San Diego. Could it be the hundreds, perhaps even thousands, of Indian People at a time, all enjoyed the richness of these coastal environments. The fish, the seeds, the water, the sun, the shell and the food that was offered during the time that once was, the fresh water from natural springs and from inland tributaries and the fish, turtles, the seeds, the grasses and other needs that this location provided. The cobbles that come from the ocean, the river beds, and the shell all were used to make tools and other types of instruments." (C. Lucas, 2009).

Design
The property's location, on the highest bluffs along this section of the Pacific coast, contributes to the value of the site's use as a final resting place, a commemoration of being interred at this special spot and where they lived, ate and told stories about their lives, lives that were lived from the coast to the mountains and the desert. The property has historical importance in teaching the tribes' children and future generations where they came from, who they are now and where they are going into the future.
Materials
The property also retains integrity as a traditional tribal burial ground. The NAHC acknowledged this with its 2008 determination that the property is a Sanctified Cemetery. Present-day Indian peoples still feel great affinity and responsibility to the burial ground and to those who have been, and those who remain, buried there. This aspect is further demonstrated by KCRC’s efforts over the years to ensure that the ancestral human remains from the property be treated with appropriate dignity and respect, an effort that continues in earnest today.

Association
Tribal members also have testified about the property’s ability to still convey the sense of the sacred and “intangible” cultural associations; and that despite the impacts that have occurred to the property, that the “essence” of the ancestors is still present and can be readily felt. “The place, a place where life itself can be celebrated to the fullest extent. Boys and Girls were conceived, born, grew up, fell in love, celebrated life, cried when needed and also took time to play, laugh and to marvel at the wonder of life and the rhythm of this environment and its many changes. The foggy days, the clear sunshine days when one can see all the way to the earth curve in the west. We call it a magical place today where the essence of the time that once was contributes to the essence of this place; it is the integrity of this location. The essence that lingers on into today's time so that the people of today can experience it as well, if only for a moment, a sense of what once was. It is the intangible essence of place, a sense of peace that validates the integrity of this location.” (C. Lucas, 2009).

B. Building Chronology
- 1950/51 - Construction of original residence
- 1960/62 Addition of Guest Room
- 1967 UC San Diego acquires property
- 1969 – Addition of Family Room and enclosure of south portal as gallery. Remodel of Mr. Black's master bath and hall; as residential kitchen and second powder room.
 - Prior to 1971 Swimming Pool installed
 - 1972 Commercial kitchen replaces original residence’s kitchen
 - 1973 Family Room expanded
 - 1980 Maid’s room closet remodel and new door to inner courtyard.
 - 1980 Addition of a trellis structure over the rear east patio area.
 - 1982 Addition of a wood frame trellis and deck with stairs on the west elevation of the barbeque deck.
 - 1985 Addition of Reception Room

C. Historic Evolution of the University House
The University House has sustained some changes to its historic obtuse U-shaped footprint following a series of additions to the rear of the building in the 1960s, 1970s, and 1980s – increasing the square footage from about 10,400 to 12,500 square feet. However, the original obtuse U-shaped configuration of the house remains intact. The interior of the house is divided into three primary wings based on layout and usage: the Southern Residential Wing; the Western Public Wing; and the Northern Service Wing. (AMS)

The south side of the residential wing has suffered substantial modifications through additions. The most substantial modification was the 1969 enclosure of the original private portal and the addition of a family
The family room was extended again in 1973, giving it its current appearance. The University also converted the husband's bathroom and dressing room space of the original master bedroom into a private family kitchen in about 1970. These changes were not visible from the main façade, or from the public areas of the house, but made the southern wing a self-contained, private residence area, rather than simply containing the bedrooms, dressing rooms, and bathrooms of the original layout. The eastern southern wall of this wing has been obscured by the enclosure of the private portal. Although the original south wall of the easternmost bedroom is intact, its original picture window has been replaced with an anodized aluminum frame window.

The family room addition is located at the west end of the portal/gallery and was extended to its current configuration in 1973. The west side of the family room looks onto an original exterior concrete staircase with plastered adobe walls that leads to the roof of the library.

The public spaces of the house are located in the center of the U-shaped plan. This part of the house contains the main entrance and foyer, the library, the living room, and dining room of the house. The library and living area are handsome rooms that are largely unchanged from Lumpkins' design. The west façade of the west wing is dominated by a 1,455-square-foot dining room addition, constructed in 1985-86. This extension, which also includes a small butlery, is appended to the rear of the original dining room and servery.

The service wing is the smaller arm of the asymmetrical, U-shaped plan of the building. This functional area includes the kitchen, “barbeque room” and deck, guest suite addition, pantry, and original maid’s quarters, before finishing at the three-car garage. In 1982 a modern wood frame trellis was built which shelters the barbeque deck. As well as, a set of concrete stairs with a stuccoed concrete wall and wrought iron railings descends from the deck to ground level; a second set of stairs leads to an unfinished concrete basement (original to the building) located beneath the deck and kitchen.

The two-room maid’s quarters, the University converted to office space following acquisition of the residence, and remodeled the room adding a door to the inner courtyard in 1980. The largest change to the service wing is the addition of a 528 square foot guest suite (upstairs) and basement extension (downstairs), constructed in 1962. William Lumpkins designed the extension that projects from the western end of the wing. On the interior of the garage is a mural of a horse corral in an undeveloped landscape dated by Keith Bright from 1955.

In conclusion, the University House has a long and rich history, little of the original has been obscured by unsympathetic additions in the recent past and all of the additions are technically reversible. The majority of the original 1950-51 original Black Residence is intact. The few alterations have not affected the historic character of the residence. The first addition, 1962, was actually completed by the Black family and designed by the original architect William Lumpkins and has gained historic significance in its own right. Following additions in 1969, 1973 and 1985-86 served functional purposes but where not sympathetic to the original design. Additional repair work and some small modifications have continued to the present day.

a) Notes from a walk-through of the property with William (Bill) Black, Jr., May 5, 2009, interviewed by Ione R. Stiegler, AIA

Famous or important people who visited at the house:

• J. Edgar Hoover
• Governor Pat Brown
• Clint Merkenson
Bill’s memories about the house and things that he noticed had changed:

- His mother disliked lawn. The front yard was full of red geraniums
- She had Hibiscus trees, rose gardens and he thought she had a vegetable garden.
- He did not remember the magnolia tree or the driveway loop connecting the two driveways. However, historic aerial photographic evidence does show the trees and the driveway.
- There was no fountain in the courtyard and the courtyard tile was original as he could remember
- The bell hanging in the courtyard was carried back from Mexico by his parents in their plane.
- All carved doors and the library cabinets were built on site by the same man.
- The cabinets in the dining room were not built on-site
- The room now known as the Servery was their Breakfast Room
- Evening cocktails were often had outside the breakfast room in the inner courtyard
- The Barbeque Room was where they had most of their family meals.
- There were bells on some of the cabinets in the BBQ room, which is where the liquor was stored.
- The pantry off the BBQ room was used as a store room and for deep freeze items
- Mural in the garage depicts the family dog (Bill couldn’t remember which dog was depicted it was one of two family pets, either Snooper or Shannon) and two of their horses. The first horse is Lady Sponsor and the foal is Lady Cover Up. Lady Cover Up was ranked the 3rd best in America and went on to win the Del Mar Debutant.
- The staining of the beams in the guest bedroom were blue pickling and was originally finished this way
- Living Room had a baby grand piano, alcove with double doors was where the music equipment was kept and played.
- Bill remembered having a game table in one of the corners in the library
- The entry way chandelier was from Mexico City
- Mrs. Black kept statues of Santos in the two niches
- The east bedroom bathroom tile of Bill’s old bathroom, is all original
- The fireplace screen in his old (east) bedroom was original
- The wallpaper on the door panels in his mother’s dressing room, is not original
- Mrs. Black would go up to the deck above the Library and sun bathe

b) Historic Documentation:
See Appendix G – UCSD Archived Drawings

D. Contextual Significance
The importance and significance of the building is multi-faceted. First, it is noteworthy as the residence of a prominent local family; second, as an exemplary example of a noted architect, William Lumpkins; and third, as an excellent example of the Pueblo Revival style and a modern era adobe. Lastly, the building is known as the residence of the chancellor of the University of California, San Diego; a position held by several scholars who have gained significance for their academic achievements.
Figure 8: Floor plan noting additions.
III. Physical Description

The following physical description incorporates the “Description of the Exterior” and “Description of the Interior” from the University of California, San Diego, University House, 9630 La Jolla Farms Drive, Historic American Building Survey, La Jolla, San Diego County, California, Compiled by ASM Affiliates, 2008. This report also incorporates descriptions of construction material found in the destructive testing process for the report UCSD University House Renovation Investigative Study, May 25, 2004. Rather than repeat their destructive testing this BSCA and several of the sub-consultant’s reports rely on their condition findings. IS Architecture has heavily interlineated additional descriptive information.

A. Overall Description and Dimensions

The University House occupies one of the largest lots in the subdivision, legal lot 14 (6.91 acres) of San Diego County Assessor’s Parcel Number 342-061-08-00. The residence is located near the southwest corner of the parcel, perched on the edge of a bluff with a steep drop-off to the canyon below. The house is designed with a rambling, asymmetrical, U-shaped footprint surrounding a central interior courtyard. The fourth side of the courtyard is enclosed with a freestanding adobe wall and wood entrance gate. As originally constructed, the University House encompassed an area of approximately 8,500 square feet. Today, after a series of alterations completed during the 1960s, 1970s, and 1980s, the residence covers about 12,200 square feet in area.

The Pueblo design consists of a series of rectangular building masses of varying parapet and roof height which create an eclectic but aesthetic form. The pueblo design is further enhanced with the use of covered porch walkways or portals. The portals create a strong shadow line, or void, cleverly counterbalancing the solid massing of the thick adobe walls.

B. Building Components

1. Foundations

The foundation type underneath much of the University House is concrete slab on grade. Where exposed in 2004, the foundation was discovered to be 24” depth x 24” width and appeared to incorporate the steel reinforcing called for on the original plans. However, portions of the west and north wings are built as a raised wood floor over a concrete perimeter foundation. These areas are under the kitchen, servery and the 1962 guesthouse addition. The 1985-86 reception room addition was built as a raised wood floor with a perimeter concrete footing and piers over a dirt crawl space.

2. Structural System

The original exterior walls of the University House are constructed of minimally reinforced adobe bricks that are finished with a coat of stucco. There are some basement retaining walls that are made of concrete block, and some of the additions utilize concrete masonry units for the foundations, all of which are coated with stucco matching the rest of the building. All of the walls for any of the additions built after the original construction date are wood frame. The walls both adobe and wood frame are load bearing. (See Chapter 7, Structural Engineering Report)

3. Adobe Walls

The construction of modern era (1920 – present) adobe buildings significantly differs from historic era (prior to 1920s) adobe construction. With the exception of a few vernacular, individually built,
remote buildings, by and large starting in the 1920s adobe construction methods evolved to include many modern day building practices similar to other masonry construction types. Starting in the 1920s and continuing through, the Uniform Building Code and the Federal Housing Authority established minimum building criteria were enforced. These criteria evolved over time but they primarily addressed:

a) Suitable foundation conditions,
b) Proper protection from rising damp and basil erosion,
c) Strengths of individual blocks from crushing or cracking,
d) Internal steel reinforcing, horizontal and vertical,
e) Proper wall height to thickness ratios,
f) Bond beams at the top of walls,
g) Design of fenestration openings,
h) Cementitious based exterior and interior finish material. (Calarco, 2008)

The Black Residence was built following many of these principles, and notably excluding a few of these principals. The walls are modern era stabilized (awaiting test results) earthen adobe blocks, formed on site,3 covered in a cementitious stucco. Most of the walls in the original structure are nominally 24-inches thick and taper to 20” at the roof. The individual bricks of adobes are nominally 3” x 11” x 17.5” the adobe walls were laid in an earthen and cementitious mortar, 1” to 1.5”, composed primarily of material similar to that used for making the adobe bricks. The adobes were made on site in 1950. (Awaiting test results)

3 William Black Jr.’s recollection of where the soil came from to form the adobe blocks. “… my best recollection,…I can’t imagine where the “soil bank” could have been without altering the general topography of the immediate site. It leads me to believe that the soil for the adobe bricks must have come from elsewhere on the 240 acres, perhaps from down around where the horse barns were located, or even from where the half-mile training track was laid-out because that, itself, required moving a lot of earth. I think the only other possibility on-site would have been from the excavations associated with constructing the so-called basement below the servant’s wing (where the mechanical was located). Come to think of it, a great deal of earth was moved when the horse paddocks were installed, and that was just about everywhere between the home site and the barns.” Enough soil to create the 100,000’s of blocks needed for a 10,000 square foot home could not have been accommodated solely by the basement area excavation. Additionally, the field space needed to lay out the blocks to dry is immense. Therefore, there is a high likely hood that the blocks were made in the open fields between the house and the paddock, barn or training track.
The walls are typical of adobe construction with a slight undulation. The stucco coat is approximately one inch thick. The stucco exterior corners of the walls are reinforced with expanded metal lath. The combination of cementitious stucco and expanded metal lath may have cloaked the appearance of cracks in the underlying adobe block. The expanded metal lath may also be cloaking or creating “false positives” in the pachometer testing; which searched for steel within walls. The expanded metal lath was also used to span the connections between dissimilar materials, such as the connection between the adobe walls and steel reinforced concrete headers which span the fenestration openings.

All surfaces show signs of patching, which should be expected. The exterior stucco surface finishes is a light sand texture. The interior plaster finish is a smooth texture.

4. Exterior Paving Materials and Interior Flooring Materials

a) Exterior Paving Materials
Red brick set in a basket weave pattern paves the walkways of the portals. The brick is tight set in a sand base and mortarless. Random flagstone set within large fields of colored grout and an octagon shaped Native American inspired tile medallion define the patio and walkways from the planter areas of the inner courtyard. The east and west rear patios are paved with acid washed concrete.

![Figure 10: Red brick set in a basket weave pattern.](image)

![Figure 11: Random flagstone set within large fields of colored grout and an octagon shaped Native American inspired tile medallion define the patio and walkways from the planter areas of the inner courtyard.](image)

b) Interior Flooring Materials
There are several different flooring materials within University House, and they include
hardwood and red tile in the public areas, carpet in the private residence areas, vinyl and carpet in the service areas, tile in the private residence bathrooms, and a concrete slab in the garage.

(i) **Tile**

The entry hall, library and barbeque rooms are finished in a waxed terra cotta tile, 6” x 9”. These tiles have a slight color variation with all tiles having dark streak marks as if brushed with a darker material. They are set in a running bond pattern. The grout is 1” wide and dark grey in color. There is a general foot traffic wear pattern on these floors, which should be expected with almost 60 year old tile.

Notably the tile floor transition from the entry hall to the wood floor in the living room shows both a fair amount of damage and no forethought on the transition of the two materials. Typically, such a poor design connection would lead to an inquiry if there had been a material change. However, the original design documentation and the personal remembrances of William Black Jr. are that the existing flooring materials in the entry hall and adjoining areas are original.

(ii) **Wood Flooring**

The majority of the rooms are finished with wood flooring. In some rooms the wood floor has been covered over by later carpet additions. The wood flooring is actually an engineered wood floor, comprised of several layers of laminated plywood veneers and a finished surface emulating a wide plank and pegged wood floor. Mr. William Black Jr. believes this to be the original wooden floor. If this is the original wood floor it represents a very early use of engineered wood flooring. Kahrs a Swedish company first patented the process of making engineered wood floors in 1941. It is not know when engineered floors were first used in the United States. If this is the original floor it represents a very early use of this material.

![Terracotta tile](image-url)

Figure 12: Terracotta tile.
Figure 13: Wood veneer plank flooring.

Figure 14: The original powder room has a wood parquet floor and matching stain grade wood wainscot paneling.

(iii) Linoleum and Vinyl Flooring
The original linoleum tile flooring is still visible in the pantry, maids bath room and the interior stairs to the basement. The tile is red in color with a slight off white marbling. Sheet vinyl has replaced the original floor finishes in the servery, butler’s pantry, commercial and residential kitchens and Guest suite bathroom. An off-white vinyl tile replaced the original flooring in the basement laundry room.

5. Doorways and doors
Several types of doors and doorways can be found in the University House. According to an oral interview with William Black Jr. all of the intricately designed wooden doors were carved and built on-site by a Hispanic worker. These include:

a) Hand Carved Exterior Doors
 (i) The main entrance has a heavy, carved wooden door that opens onto the foyer, which is situated at the west end of the residence wing and opens onto both the library and the living room.
 (ii) Barbeque room doors
 (iii) A single carved wood door in the north wall of the easternmost bedroom opens onto the east end of the portal
 (iv) Garage door
b) Hand Carved Interior Doors
 (i) Raised multi paneled doors that were site built, in a wide variety of designs.
 (ii) The Guest suite addition and the door from the servery to the basement are v-groove vertical plank doors.
Figure 19: Master bedroom door.

Figure 20: Library door.

Figure 21: Dining room door.
Figure 22: East bedroom door.

Figure 23: Guest bedroom door.

Figure 24: Dining room door.
c) Pre-manufactured Doors:

(i) Pairs of multi-pane French doors, 12 light with raised panel below. They are found in the Dining Room, Servery, former exterior access from the Library to the south portal, Master Bedroom, Guest Bedroom, and basement to exterior.

(ii) French door with 8 lights in a unique arrangement for the east bedroom entrance from the gallery. A similar door accesses the pantry but has solid panels replacing four of the lights.

Figure 25: East bedroom door.
Figure 26: Guest suite basement door.

(iii) Exterior entry to the guest suite basement through a double wood panel door with louvers.
(iv) A pair of wood panel doors with glazing. 9 lights over 4 raised panels is used from the north service wing portal to enter the Maids room and the office.

Figure 28: Barbeque door. The barbeque room’s access to north service wing portal is similar but is a single door with 12 lights and four panels below.
(v) Library to west rear patio 12/3 French doors with cremol bolts.

(vi) A replacement aluminum frame sliding door is set in the west side of the barbeque room.
(vii) Non-historic modern 15 light French doors, without a bottom panel, service the reception room addition and were used to replace the dining room’s original south facing French doors.

(viii) Non-historic slab doors with wood veneer connect the butler’s pantry to the reception room, the dining room to the reception room and access to the storage room in the reception room.

d) Material, finishes and hardware
The pre-manufactured doors have a paint finish and the site built doors are stained. Some site built doors are stained with a semi-opaque stain in either a brown or blue/gray stain. The hardware used on site is a wide variety; from pre-manufactured knobs to hand wrought iron.

6. Windows
The University House has several different types of windows that can be found around the exterior. These include:

a) Types
(i) One decorative stain glass leaded window lights the entry hall. The design is a bullseye and diamond pattern.
(ii) A variety of wood frame, multiple-light, double- and single-hung windows in 8/12, 6/6, and 4/4 configurations; all appear original.
(iii) Different combinations of multiple-light casement windows and fixed-pane picture windows.
(iv) Replacement anodized aluminum frame windows.
(v) Sidelight and transom windows around some of the entrances.

b) Installation
The windows have two configurations; the first the windows are set about one-third into the wall with simple plaster returns and sill. The second are the windows finished with a shallow wooden pediment in a Territorial style casing and a projecting wooden sill. Windows are set closer to the exterior face of the wall with simple plaster returns and sill.

Figure 31: Simple plaster returns.
7. Lintels
All the doors and windows have hidden reinforced concrete lintels. Three interior doorways have an exposed decorative wooden lintel. The living room to entry hall opening has a deep wood lintel made up of multiple beams, 7 to 9” wide by 9.5” tall, the face of both sides of the lintel has a plant-on decorative board carved in a scallop motif. A slightly smaller wood lintel made up of multiple 7.5” x 7.5” beams without a decorative motif articulates the library to gallery doorway. The access hall from the entry hall that once was the entryway to the original master bedroom suite and now serves the guest powder rooms has a single round viga used as an exposed lintel. On the exterior the gate at the end of the north portal of the south wing also has a single exposed wooden lintel.
8. **Roof**

The original building has two roof types differentiated by area: the roof over the portals and the roof over the main structure.

The portal roof is composed of a flat roof with a parapet, the roofing material is rolled asphalt roofing with a mineral cap sheet, over ½ inch plywood, attached to 2x sleepers at 24” on center, bearing on 2” x 7” v-grooved wood plank sheathing. The underside of the roof sheathing at the portal is exposed and slightly stained. The roofs are supported by exposed peeled pole viga roof rafters, approximately 9 inches in diameter and 30” on center.
These roof rafters are supported at the exterior edge by posts and beams and on the interior edge by seating in pockets created in the adobe wall. The wood beams are roughly square 8 x 10 that are supported by peeled pole posts approximately 9.5 inches in diameter. The majority of the roof joists, beams and posts are believed to be original except for the added trellis and posts on the rear east and west patios and the west side barbeque porch. At the intersection with the adobe walls, modern flashing has been added at a few areas.

The roof over the main structure is composed of a flat roof with a parapet edge. The rolled asphalt roofing with mineral cap sheet is laid over ½ inch plywood, attached to 2x sleepers at 24” on center, bearing on 2” x 12” wood planking. The roof is supported by three different styles of roof rafter framing. 1) Peeled pole viga roof rafters, which are left exposed to the interior, 2) Dimensioned lumber beams with or without a box beam finish, and 3) 2x lumber that supports a finished plaster ceiling below. These roof rafters are supported at the ends by bearing on the exterior adobe walls. (For further information see Chapter 7, Structural Engineering Report.)

Original building drawings for the guest room addition indicate that the roof framing consists of ½” plywood over conventional 2x joists at 16” on center with ripped 2x sleepers above to provide roof slope.

The drawings for the family room indicate that the roof framing consists of 5/16” plywood over 2x T & G planking supported by conventional 3x joists at 24” on center.

The drawings for the reception room indicate that the roof framing consists of ¾” plywood over 2x conventional joists at 24” on center supported by 5 1/8” x 15” glue-laminated beams at 3’-9” on center.

The roofs drain to copper scuppers that lead to leader heads, which connect to downspouts.

The current roof has several exposed mechanical equipment pipes and ducts. Electrical wires, coaxial cables and conduits are left exposed on the roof. (For further information see Chapter 8, Mechanical, Electrical and Plumbing Engineering Report.)
9. **Fireplaces and built-in barbeque**

The residence can boast of a fireplace in every family bedroom as well as the library and the living room. Historically the home had five fireplaces. A sixth fireplace was added with the family room addition in 1969 or 1973. Three of the historic fireplaces follow the corner beehive or kiva style with or without a side "banco" or bench typical of the pueblo revival detailing. The master bedroom fireplace while a corner fireplace has a slightly more formal almost colonial detailing with simple flanking columns and mantle. The living room fireplace is more the majestic Spanish Revival style end wall statement with banco. This fireplace projects from the wall, has an organic form and is ornamented with rustic inverted rope carved cornice. Every fireplace has a custom built wrought iron screen either freestanding or hinged.

![Image of East bedroom with fireplace](image1.jpg)

Figure 37: East bedroom.

![Image of Guest Bedroom with banco](image2.jpg)

Figure 38: Guest Bedroom with Banco.
Figure 39: Library with raised hearth.

Figure 40: Master bedroom with side pilasters.

Figure 41: Living Room with two Bancos.
The built-in barbeque has a single large damper over a smaller grill area with ash dump. The grill area has a copper raised cover to allow the food to smoke. The front lower face of the grill area is tiled like the wainscot in the room but is punctuated with three copper doors that provide access to wood or other storage areas.

C. Exterior Description

1. Walls
 Methodology of Description
 The elevations are described starting inside the interior courtyard on the north elevation of the south wing at the front door and continuing around the interior courtyard in a clockwise direction. The description then jumps to the outside of the “u” shaped plan, starting with the south façade of the south wing, the west façade of the west wing and finishing with the north façade of the north wing. The individual elevations were described in the following order: walls, elevation elements, doors, windows and finishing with either the exterior grade or pavement. The roof components, such as overhangs, beams, and under side of roof, are discussed under the roof description.

 The original exterior walls are approximately two feet thick constructed of primarily un-reinforced adobe bricks; that are finished with a coat of cementitious stucco.

 a) Interior Entry Courtyard and Façades
 The interior entry courtyard is surfaced with random flagstone and features an octagonal ceramic tile mosaic near the center. The patio is enclosed on the east with a gently curving, four-foot high adobe brick wall. Situated near the center of the wall is an arched, rustic wood gate. The gate is inset with turned spindles and trimmed with wrought iron hardware. Landscaping within the patio includes a small lawn, an olive tree in a circular adobe brick planter, and a variety of smaller planters and pots and climbing plants.
b) Portal

The interior courtyard façades consists of a covered arcade, or portal, that opens onto the central outdoor courtyard. The portal is inset within the main mass of the structure. Along the north wing, the south façade, the portal ends into the adjoining garage wall and along the south wing, the north façade; the portal is enclosed by an end wing wall. The interior courtyard portal has a flat roof that is 11 feet high, but lower than the roof systems of the main residence. The portal roof is supported by round timber vigas (beams) and baseless posts. The posts are evenly spaced and adorned with shaped wooden corbels. The portal flooring is red brick, set in a basket weave pattern, with a solder course perimeter edge.
c) South Wing – North Façade
The main entrance is a heavy, carved wooden panel door that opens onto the foyer, which is situated at the west end of the residence wing and opens onto both the library and the living room. A simple wooden sign mounted above the entrance reads “University House,” and the entrance is further articulated with flanking light sconces. The current light fixtures are not original.

To the west of the main entry are two double hung windows that open into the living room. To the east of the main entry are a series of 8 windows and a door. The wing extends beyond the inner courtyard wall and instead is flanked by a rose garden contained within a lower adobe garden wall. Fenestration on this side includes a variety of wood frame, multiple-light, double and single-hung windows in 8/12, 6/6, and 4/4 configurations. Three of the large double hung windows open into the master bedroom and guest bedroom. The three smaller 6/6 windows serve the guest and powder bathrooms. All of these window and door openings have no exterior wooden casing; the exterior stucco simply wraps the openings and returns back to the deep-set wooden jambs and sills of the windows and doors. However, the two smallest windows 4/4 which serve the master bathroom have a wood sill, jamb and head casing in a shallow pediment shape drawing from the Territorial style tradition.

Figure 47: The tapered or battered wall, at the eastern end of the wing, has rounded edges.
The tapered or battered wall, at the eastern end of the wing, has rounded edges typical of the Pueblo Revival style. A short tapered wall extends from the bedroom at the east end of the main portal. An ornately decorated wrought iron gate is set in an opening with tapered sides, and rough-hewn post and lintel framing is visible. A single carved wood door in the north wall of the easternmost bedroom opens onto the east end of the portal. Beyond the portal, the eastern bedroom north wall has one multiple-light, 6/6 wood frame double hung window. Continuing around to the east end of the south wing, the wall has one 8/12 and one multiple-light, 6/6 wood frame double hung windows.

A wooden gate in an adobe site wall secures access onto the east rear patio.

![Figure 48: A short tapered wall extends from the bedroom at the east end of the main portal which has an ornately decorated wrought iron gate.](image)

d) West Wing – East Façade

This façade consists of two pairs of French doors and a triple casement window. Starting at the south end of the façade the pair of 12 light wooden French doors with bottom raised panel accesses the original formal dining room. A little further north on the façade is an identical pair of French doors that access the servery; a secondary eating and serving area like a butler’s pantry. The triple wooden casement windows serve the kitchen.

![Figure 49: The barbeque room has a pair of carved wood doors that open onto the inner courtyard portal and are adorned with wrought iron hardware.](image)
e) North Wing – South Façade
The barbeque room has a pair of carved wood doors that open onto the inner courtyard portal and are adorned with wrought iron hardware. A cast iron bell, noted in prior reports as having been brought from the Blacks’ ranch in New Mexico was actually bought in Mexico City by the Blacks and flown directly to San Diego. The bell is suspended from the beam of the portal near this entryway. Over this entry way hangs an antique wrought iron butcher’s sign. A clever reference to the meat to be roasted on the built-in barbeque inside.

The current office, former maid’s room, overlooks the inner courtyard accessed via a replacement wood and multi-light door onto the main portal. The windows of the pantry and office also face onto the interior courtyard portal. They are 6/6 wood frame double hung windows. These windows differ from those on the other courtyard-facing wings in that they are cased with shallow pediment window and door head casings, a classical detail from the Territorial style common in the southwest. Only the replacement door to the office has the simple stucco return seen on the other wings.

f) South Wing - South Façade
The south façade of the south wing was always the primary view façade as well as the primary source for passive solar heat gain. As such large fenestration openings were needed to capture the view and the solar heat benefits. On this façade the architect broke with traditional pueblo design by incorporating large picture windows. Centrally situated on the façade is the projection of the library room with a large picture window and corner chimney. To the east of this protrusion is a non-historic family room, the configuration of the stucco walls are adorned with two pictorial works of art. One is a hand painted blue and white ceramic tile plaque that portrays a church and street of an unknown city presumably in Mexico. The church and steeples resemble those found in Mazatlan, Mexico. The other is a canvas painting permanently affixed to the wall that portrays a similar pictorial scene.

This wing extends beyond the inner courtyard wall. The extension is the south side of the garage and has no fenestration.

Figure 50: a hand painted blue and white ceramic tile plaque that portrays a church and street of an unknown city. Possibly Mazatlan, Mexico.

Figure 51: A canvas painting permanently affixed to the wall that portrays a similar pictorial scene.
which was simply to enclose a portion of the former patio. Continuing to the east is the
south wall of the original portal.

Figure 52: The south portal, now gallery, enclosed in 1969.

The south portal, now gallery, has been enclosed. The enclosure a wood frame, stucco-
coated wall, dominated by a band of aluminum frame, plate glass picture windows topped
with a narrow band of hopper transom lights. The picture windows are flanked on either
side by double sets of wooden French doors. Although the original south wall of the
easternmost bedroom is intact, its original picture window has been replaced with an
anodized aluminum frame window. The gallery is still sheltered by the original roof with
square beams and posts.

Figure 53: A 1980 addition added a trellis structure over the rear east patio area and mimicked the corbels and
columns found on the building’s interior courtyard portals.
A 1980 addition added a trellis structure over the rear east patio area and mimicked the corbels and columns found on the building’s interior courtyard portals. The gallery opens to a concrete patio enclosed with a modern concrete and Plexiglas wind screen. To the west of the Library is the living room with a large central picture window flanked on either side by full height single French doors.

Figure 54: The living room with a large central picture window flanked on either side by full height single French doors.

g) West Wing - West Façade
The west facade of the west wing is dominated by a 1,455-square-foot reception room addition, constructed in 1985-86. The new reception room addition attempts to mimic the original Pueblo Revival design of the original, but its geometric rows of massive squared columns that form freestanding external colonnades along the south and west sides are not entirely in keeping with the more organic forms of the original building. The columns support a flat roof and a wood frame trellis that shelters portions of the west bluff side patio. The reception room’s south wall includes a row of three wood frames multiple-pane French doors. The west wall is set with large, wood frame picture windows, and the north wall features five sets of six-light casement windows. The

Figure 55: The west wing is dominated by a 1,455-square-foot reception room addition, constructed in 1985-86.
The rear of the barbeque room, so-named because of its built-in tiled barbeque pit, and the rear of the kitchen open to a modern brick-suraced concrete deck on the northwest corner of the building. A replacement aluminum frame sliding door is set in the west side of the barbeque room, adjacent wood frame picture windows that fill the remainder of the west wall of the barbeque room. A modern wood frame trellis partially shelters the deck. A set of concrete stairs with a stuccoed wall and wrought iron railings descends from the deck to ground level; a second set of stairs leads to a basement (original to the building) located beneath the servery and kitchen.

h) West Wing – South Façade
The only south facing fenestration is a pair of French doors flanked with five-light sidelight windows. These are replacement units installed with the reception room addition but fit within the original opening. The doors access the west bluff side patio from the original formal dining room.

i) North Wing - North Façade

The wood frame and stucco guesthouse addition is roughly square in plan. The windows that light the second-story guest room are a combination of multiple-light wood casement windows and fixed-pane picture windows flanked with casement sidelights. One smaller casement window serves the bathroom. The windows are all set with simple stucco returns and sills. An exterior entry to the basement is through a double wood panel door on the northwest side.

Figure 56: North Wing North Façade

Figure 57: North Wing North Portal
The only window on the north side of the maid’s quarters/office is a small, multiple-light casement window set between two sets of glazed double doors with four raised wood panels below. The doors have wooden screens and are headed with shallow pediment casings, similar to the ones described on the interior courtyard. The doors open to a short, elevated portal with guard rail, corbels, posts, and beams similar to those found on the interior courtyard portal on the opposite side of the building. The portal has red brick surfacing and a concrete staircase that leads to a patio area below. A low four-to-five-foot adobe brick wall surrounds the patio, forming a service/drying yard. The northern wing terminates at a three-car garage attached to the east end of the wing. The garage features three wood tilt-up doors with post-and-beam framing. The doors are embellished with decorative paneling and applied diamond designs. The design is very similar to other published garage door designs of William Lumpkins.

2. Porches and Patios
There are several porches and patios at the University House that together encircle most of the exterior of the building.

On the northwest side of the maid’s quarters/office is an elevated portal with corbels, posts, and beams similar to those found on the interior courtyard portal on the opposite side of the building. The portal has red brick surfacing and a concrete staircase that leads to a patio area below. A low four-to-five-foot adobe brick wall surrounds the patio, forming a service/drying yard.

Figure 58: The design is very similar to other published garage door designs of William Lumpkins.

Figure 59: The rear west patio, (2,784 s.f.) a large portion of which dates to the mid 1980s, wraps around the southwest corner of the building and connects with the patio area around the living room to the east.
The rear west patio, a 2,784 square foot area a large portion of which dates to the mid 1980s, wraps around the southwest corner of the building and connects with the patio area around the living room to the east.

The gallery, sheltered by the original roof with square roof rafters and posts, had doors and windows stopped into the openings. The gallery opens to a concrete bluff side east patio that in 1980 had a wooden trellis installed with posts, beams and corbels that mimic the original design from the inner courtyard. The patio was also enclosed with a modern concrete and Plexiglas windbreak. Unlike the other patios and porches at the University House, this patio is only accessible from the private residence area of the building.

3. Chimneys
There are several small chimneys corresponding to each of the fireplaces in the interior of the house. Some of the chimneys are visible from the ground or are partially obscured by the parapet. All chimneys are covered with stucco.

4. Exterior Lighting
The historic exterior lighting fixtures are a verity of designs and materials but they are uniform in their “lantern” style. Many have been converted from gas burning fixtures.
Figure 62: Original exterior wall sconce - Garage

Figure 63: Original Entry post lamps

Figure 64: Original exterior wall sconce – Living room patio.
D. Interior Description

1. Floor Plans
The University House has sustained some changes to its historic obtuse U-shaped footprint following a series of additions to the rear of the building in the 1960s, 1970s, and 1980s – increasing the square footage from about 10,400 to 12,500 square feet. However, the original obtuse U-shaped configuration of the house remains intact. The interior of the house is divided into three primary wings based on layout and usage: the Residential South Wing; the Public West Wing; and the Service North Wing. (ASM)

a) Residential South Wing
The residence’s southern wing has always served as the private, or residential, area of the house. The wing is long and narrow, with an east-west axis. As originally constructed, the wing consisted of a linear arrangement of three bedrooms, each with its own corner fireplace. The primary access to each of the bedrooms was through exterior doorways that opened to the south onto an outdoor private portal. The University enclosed this portal in 1969, and the former walkway is now referred to as the “gallery.” The west end of the private portal terminated at a door leading to the library in the public areas of the house. The north side of the private wing overlooks the patio (interior courtyard) and a long, semi-circular planter box (rose garden) enclosed with a low adobe brick wall.” (ASM)

The most substantial modification was the 1969 enclosure of the original private portal and the addition of a family room. The family room was extended again in 1973, giving it its current appearance.

Figure 65: The University also converted the dressing room space of the original westernmost master bedroom into a private family kitchen.

The University also converted the dressing room space of the original westernmost master bedroom into a private family kitchen in about 1970. These changes were not visible from the main façade, or from the public areas of the house, but made the southern wing a self-contained, private residence area, rather than simply containing the bedrooms, dressing
rooms, and bathrooms of the original layout. The southern wall of this wing, that once was the primary closed side of the portal, has been obscured by the enclosure of the private portal as the gallery. Although the original south wall of the easternmost bedroom is intact, its original picture window has been replaced with an anodized aluminum frame window. The south wall, originally the open side of the portal, now gallery, is a wood frame stucco-coated wall dominated by a band of metal frame, plate glass picture windows topped with a narrow band of hopper transom lights. The picture windows are flanked on either side by double sets of wood frame and glass doors. The gallery is still sheltered by the original roof with square beams and posts and corbels that mimic those found on the building’s main façade.

The family room addition is located at the west end of the portal/gallery and was extended to its current configuration in 1973. This room is of wood frame construction and is dominated by a bay with large, wood frame picture windows facing south over the bluff. Other fenestration includes aluminum sliding sash windows and sliding glass doors. This addition is topped with a flat roof with broad, open eaves. The west side of the family room looks onto an original exterior concrete staircase with plastered adobe walls that leads to the roof of the library.

The private wing transitions into the combination public/private spaces of the house that are located in the center of the U-shaped plan. This part of the house contains the main entrance and foyer, the library, the living room, and dining room of the house. The main entrance is a heavy, carved wooden door that opens onto the foyer, which is situated at the west end of the residence wing and opens onto both the library and the living room.
The library and living area are handsome rooms that are largely unchanged from Lumpkins’ design. Both rooms have original wood frame picture windows with deep sills. In the living room, the south-facing living room windows are flanked by wood frame, single-pane French doors. The doors open to the large concrete terrace that wraps around the southwest corner of the building and connects with the patio area around the dining room to the west. A pair of multiple-pane French doors in the west wall of the library also opens onto this terrace.

The north side of the foyer and living room, and the east side of the dining room, form the bottom of the “U” that faces onto the main portal and inner courtyard patio.

b) Public West Wing
The west facade of the west wing is dominated by a 1,455-square-foot reception room addition, constructed in 1985-86. This extension, which also includes a small butlery, is appended to the rear of the original dining room and servery. Other than the main entrance, the only other entrance that leads to the reception room is through the pair of multiple-light casement doors to the dining room.
Figure 68: The west facade of the west wing is dominated by a 1,455-square-foot reception room addition, constructed in 1985-86. This extension, which also includes a small butlery, is appended to the rear of the original dining room and servery.

Figure 69: Servery
The reception room addition attempts to mimic the original Pueblo Revival design of the original, but its geometric rows of massive squared columns that form colonnades along the south and west sides are not entirely in keeping with the more organic forms of the original building. The reception room’s west wall is set with large, wood frame picture windows, and the north wall features five sets of six-light casement windows. The south wall of the extension includes a row of three wood frame, multiple-pane French doors. These doors are similar to a fourth set of French doors, located along the same wall to the east, which opens to the original dining room. This easternmost set is flanked with five-light sidelight windows. The reception room continues the emphasis of detail on the ceiling. The reception room has a “cloud lift” beam corbel detail. Beam and corbel are built integral to each other and wrapped in sheet rock with just a wood detail on the bottom edge. Small 4x4 cross beams run between the “cloud lift” beams. The ceiling is painted with rough acoustic ceiling finish in-between the beams.

c) Service North Wing
This functional area begins north of the “servery,” and includes the kitchen, “barbeque room” and deck, guest suite addition, pantry, and original maid’s quarters, before finishing at the three-car garage. The southeast side of the wing overlooks the central patio. The servery (a secondary eating and serving area) leads into the kitchen, which in turn opens onto the barbeque room. The servery has two doors on its east wall, a set of double multiple-light wood panel doors, and on the west wall is the door leading to the basement stairs.

The kitchen has a set of three wood frame casement windows in the east wall, while the next room to the north, the barbeque room, has a pair of carved wood doors on the south wall that are adorned with wrought iron hardware.

Figure 70: Original residence Kitchen now commercial kitchen.
The rear of the barbeque room, so-named because of its built-in tiled barbeque pit, and the rear of the kitchen open to a brick-surfaced concrete deck on the northwest corner of the building. A replacement aluminum frame sliding door is set in the west side of the barbeque room, adjacent to wood frame picture windows that fill the remainder of the west wall of the barbeque room. A modern wood trellis partially shelters the deck. A set of concrete stairs with a stuccoed wall and wrought iron railings descends from the deck to ground level; a second set of stairs leads to a partially finished concrete basement (original to the building) located beneath the servery and kitchen.

North of the barbeque room are a pantry and two-room maid’s quarters, which the University converted to office space following acquisition of the residence. The southeast side of the office overlooks the central patio, where a replacement door, in a former window location, opens onto the main portal. The windows of the pantry and office that also face onto the main portal consist of six-light wood frame casements. The largest change to the service wing is the addition of a 528 square foot guest suite with bathroom (upstairs) and basement extension (downstairs), constructed in 1960 - 62. William Lumpkins designed the extension that projects from the western end of the wing. The northern wing terminates at a three-car garage attached to the east end of the wing. The garage features three wood tilt-up doors with post-and-beam framing.

2. **Stairways**

There is only one interior stair. The stairway leads from the servery to the basement laundry area and mechanical room. The stair is a simple switch back design. There are no guardrails, just a handrail and a linoleum finished staircase.

3. **Walls and Ceilings Finishes**

The typical interior wall partitions are of wood frame construction with gypsum board or plaster, depending on the room.
Figure 72: On the interior of the garage is a mural of a horse corral in an undeveloped landscape, painted by Keith Bright and dated 1955.

The ceilings are a major decorative feature in almost every room. The historic ceiling types break down to four types:

1) Peeled pole beams to emulate Pueblo style vigas with either a plaster coved ceiling between or articulated tongue and groove wood planks.
2) Territorial Style boxed beams with articulated tongue and groove wood planks.
3) Territorial rough sawn beams with corbels and articulated tongue and groove wood planks.
4) Unadorned simple flat plaster.

The Pueblo style log beams emulating Pueblo style vigas do not extend through the adobe wall to the exterior as historic vigas would. Conjecture might guess that this departure from the traditional building style may have been an acknowledgement of the climate difference between the desert southwest and coastal La Jolla, or a stylistic preference of the architect’s. Although southern California is known for its sunny weather, the coastal daily dew and seasonal fog may have advised to minimize the log ends exposure to moisture and the attendant possibility of rot. These peeled pole viga beams are very consistent in size 9-10” in diameter and show no taper. Between the peeled pole vigas the plaster ceiling is decoratively finished in small cove vaults in the living room, dining room and master bedroom. The viga style ceiling is also used in the entry hall, powder room and laundry hall. Here 1 x 7 tongue and groove “V” grooved planks are alternated with reeded planks. The Territorial style boxed beams, 6.75” x 9.5” at 2’-6” on center, are used in the east bedroom with 1 x 11 tongue and groove planks laid in an alternating chevron pattern. The entire ceiling is stained a red – brown color. The guest bedroom has slightly smaller boxed beams, 6.5” x 8.75” at 2’-8” on center, with 1 x 11 tongue and groove “V” grooved planks. The barbecue room’s boxed beams are, 5.75” x 12.5” at 2’-6” on center with 1 x 11 tongue and groove ”V” grooved planks. Both of these rooms are stained a gray-blue color. The only room with exposed heavy timber beams and corbels is the library. 6” x 10.5” rough sawn beams are set 2’-4” on center and are supported by carved corbels 2’-9” x 9.5”. Between the beams are 1 x 11 tongue and groove “V” grooved planks. In this room the ceiling
is stained dark brown. Two small areas of note are the hall between the guest bedroom and the east bedroom as well as the closet hall in the east bedroom, both of these areas have wood ceilings with 1 x 11 tongue and groove "V" grooved planks stained a red – brown color.

The reception room continues the emphasis of detail on the ceiling. The reception room has a cloud lift beam corbel detail. Beams and corbel are built integral to each other and wrapped in sheet rock with just a wood detail on the bottom edge. Small 4x4 cross beams painted with rough acoustic ceiling finish in-between.

Figure 73: Viga ceiling in master bedroom.

Figure 74: Boxed beams and wood ceiling in guest bedroom.

Figure 75: Boxed beams and wood ceiling, in chevron pattern, in east bedroom.
4. Doors and Windows

a) Doorways and doors
The interior doors in the University House comprise of a variety of wood doors. Many of the doors exhibit different patterns of ornamentation. Other than the more frequent use of ornamental doors in rooms of higher importance, there does not appear to be any pattern to their distribution in regards to the patterns that are present.

b) Windows
Within the gallery that was enclosed by the 1969 addition to the private residence area of the house there are three 6/6 double-hung windows. All other windows face outside of the house and have the same description as the exterior.

5. Decorative Tile Features
The interior on the University House has an extensive number of decorative features but very few applied trims. The decorative features are those commonly associated with the Pueblo Revival or Territorial style. The primary features that are emphasized are the floor finishes, the ceiling designs, tile and the fireplaces.

The ceilings, floors and fireplaces have been previously described; this section will focus on the decorative feature of the tile.

Figure 76: A raised relief tile similar to a Malibu tile but a pictorial image of a Spanish arcade with stucco arches and red tile floor.

Custom ceramic tile appears on the windowsill of the library and two window sills in the eastern bedroom. The library window sill tile is a raised relief tile similar to a Malibu tile but a pictorial image of a Spanish arcade with stucco arches and red tile floor, rather than the typical geometric or floral design. The east bedrooms window sills, two locations, are an encaustic tile with a geometric pattern.

Extensive ceramic tile is the primary decorative feature and lines the counters, wainscot and surround
of the built-in grilling area of the barbeque room. The glazed tile in this room is multi-color; the repeating pattern is created over four tiles. The tile is known to be from a Mexican manufacturer. The same tile was bought by Angeles Leira, for her own home, in Tijuana, Baja California in the 1960s.

Figure 77: Barbeque room

Figure 78: Original tile in Barbeque room.

Figure 79: Guest bedroom bath. Original tile can also be found in three bathrooms in the private residence wing of the house.
The guest bedroom bathroom tile is stylistically very similar to the barbeque room. The flooring in the Guest Bedroom’s bathroom consists of white 3” hexagon tiles. The 4’-0” high wainscot is made up of 4”x4” ornate tiles that are set in square two-over-two pattern creating a repeating design throughout the tile field. The tiles are blend of white, yellow, black and different shades of blue and are set in a white grout with a yellow quarter round tile at its terminations to the wall. The same tiles and pattern are used both in and around the bathtub shower enclosure and the countertop of the vanity.

The eastern bedroom bath and the maid’s room bath are made of plain ceramic tile, staggered set in a solid color with and accent band.
Originally the master suite had separate “his and hers” bathrooms and dressing areas. The remaining “hers” Master Bathroom has 8”x8” pink-rose marble tiles. There is a patch of tiles in front of the vanity that do not match the remainder of the floor and are mostly replacements. Slabs of the marble are used extensively throughout the bathroom. The room is lined with a 4’-0” high wainscot of marble slab material and the marble completely lines the tub-shower enclosure. Similar granite slabs are also on the vanity top in the dressing room.

![Figure 82: East bedroom bath.](image)

Yellowish-gold tiles adorn the bathroom of the easternmost bedroom, which was formerly occupied by Bill Black, Jr. The floor tiles are 4”x4” set in a diagonal pattern and set in a light whitish grout. The wainscot is 4’-0” high with the same tile in a straight set pattern starting with a 3”x6” base tile. Towards the top of the wainscot is a very thin decorative tile banding of alternating yellow and maroon tiles. The wainscot is terminated with a bull nosed tile that also matches the field tile’s color. The countertop utilized the same tiles and is set in a diagonal pattern similar to the floor. The shower floor tiles are smaller in size and are set in a checkerboard pattern of alternating 2”x2” tiles with four 1”x1” tiles.

![Figure 83: Maid’s bathroom.](image)
The octagonal patio tile medallion has a rough surface like concrete and the red field color may be integral with other colors surface applied.

Reception room addition also has an accent on tile, a bright red glazed base tile surrounds the room as a base board; and muted terracotta 12 x 12 floor tiles with rusticated edges, as well as a dimpled surface mechanically made to look “handmade,” covers the floor. The tile is set in a gray grout.

6. Cabinetry

In a few rooms built-in cabinetry are a primary decorative feature, such as carved bookcases and cabinets, are located in the library, dining room and a music cabinet with elaborately carved doors set into the living room's north wall.

Original cabinetry is extant in the library, living room, dinning room, servery, barbeque, women’s powder room, Mrs. Black’s bath and dressing area, guest dressing area, guest bath, east bedroom entrance hall, and east bedroom bath (very simple, possibly not original but tile looks original).

Figure 84: Dining room cabinet.

Figure 85: Dining room corner cabinet.
Dining room cabinets are set into wall and only project a few inches, two cabinets are diagonal corner cabinets. All have a shallow pediment head detail similar to the Territorial detail used on some of the exterior windows. The arrangement has glass uppers or open shelves with enclosed lower cabinets. All have been mirrored backed with faux antique mirrors; the mirrors may not be original. The doors and drawers have a chevron applied design.

Living room music cabinet was remodeled as a dry bar with new interior cabinetry and mirrored back during the University’s ownership. The ornately carved design compliments the living room fireplace. The header casing and side casings have the same reverse rope detail. The doors are a combination of carved raised panels and turned spindle work.
Library cabinetry consists of four cabinets, two taller and two slightly shorter. All are partially recessed into the wall and project only a few inches. The two taller cabinets have a row of closed cabinets across the top with open shelving below and closed base cabinets. One of the shorter cabinets is similar but without the upper closed cabinets. The other shorter cabinet also does not have the upper closed cabinets but the open shelf area instead has glass cabinet doors. All of the cabinets are surmounted with a Saint James shell motif, the top rail of the shelf areas have a corbel or scalloped design. The cabinet doors have applied carved floral and leaf bouquet designs.

Bath rooms and closets have simple flat panels typically with an applied bed mold.

The servery has an inset flat panel design. Some cabinetry is not original this includes the butlers pantry, residential kitchen, and commercial kitchen.

7. **Hardware**

The hardware in the house appears to be a combination of original and new hardware for doors, lights, cupboards, and other permanent fixtures. The rooms with the most significant hardware are the barbeque room with its original barbeque-related hardware of wrought iron, as well as the servery, library, dining room, living rooms in the public area of the house, and the bedrooms and bathrooms of the private residence area. Often these fixtures are brass.

Of particular interest are the cabinet pulls in the barbeque room. These pulls are made from miniature cow bells affixed with a leather strap. William Black Jr. retells the family joke. His mother always said that she put those bells on the cabinet so she would know when William Black Sr. was raiding the liquor cabinet.
8. Mechanical Equipment

a) Heating, air conditioning, ventilation
Climate control equipment (HVAC) is present at the University House but is not original. The original home was heated using a radiant heat system tied to a boiler in the basement. The radiant heat coils were buried in the concrete floor slab. (For further information see Chapter 8, Mechanical, Electrical and Plumbing Engineering Report.)

b) Lighting
The University House has both incandescent and fluorescent lighting systems. Many of the original historic light fixtures are still extant.

The light fixtures that are original (1951) include decorative chandeliers at the front vestibule, servery, the master bedroom, guest bedroom and the east bedroom.

Light fixtures in the reception room and family room additions are original from their respective construction date.

Library, some bathrooms, residential kitchen, commercial kitchen, dining room and barbeque are not original, 1951.

Heat lamps are also located in the butlery for the purpose of keeping food warm. The fluorescent lighting can predominantly be found in the service and office areas.

(For further information see Chapter 8, Mechanical, Electrical and Plumbing Engineering Report.)
c) Plumbing
The residence has five full bathrooms that service bedroom areas. Two half bathrooms are for guests and a ¾ service bathroom in the basement. Three of the restroom facilities in the private residence area of the house and one in the maid’s room do not appear to have been remodeled and retain integrity of design and materials. The rest of the restroom facilities, as
well as the public and private kitchens have been extensively remodeled.

(For further information see Chapter 8, Mechanical, Electrical and Plumbing Engineering Report.)

Figure 95: Servery

Figure 96: Master Bedroom
IV. Significance Evaluation

Historic Character is defined as visually distinctive materials, features, and spaces. Character defining materials, features and spaces are those elements that can be attributed to the building's architectural style and Period of Significance, 1952. Period of Significance was determined in the National Register Nomination as 1952 for Architecture. The elements are integral to understanding the historic character of the building and how its surroundings should be rehabilitated.

“…guidance for the treatment Rehabilitation begins with recommendations to identify the form and detailing of those architectural materials and features that are important in defining the building’s historic character and which must be retained in order to preserve that character. Therefore, guidance on identifying, retaining, and preserving character-defining features is always given first. The character of a historic building may be defined by the form and detailing of exterior materials, such as masonry, wood, and metal; exterior features, such as roofs, porches, and windows; interior materials, such as plaster and paint; and interior features, such as moldings and stairways, room configuration and spatial relationships, as well as structural and mechanical systems.”

(http://www.nps.gov/history/hps/tps/standguide/rehab/rehab_approach.htm)

A. Significance of Architectural Style and Architect’s Design Philosophy

From the Historic American Building Survey (HABS):
“The Pueblo Revival style is based on Native American Pueblo architecture found in the American Southwest, but also blends in influences of the more recent Spanish Colonial style. The Pueblo Revival style’s character-defining features usually include a flat roof with parapet; walls and parapets with rounded edges and corners; projecting wooden roof beams, or vigas, that often project through the wall; and stuccoed wall surfaces. Pueblo Revival buildings are frequently constructed of adobe, but not necessarily so. Other common embellishments include exterior arcades, called portales [sic], lined with wood columns capped with handcrafted corbels; brick or flagstone floor surfacing; interior corner fireplaces, and decorative ironwork. The University House artfully incorporates many of these hallmark characteristics into its design: rounded and battered adobe walls; long, inset portales [sic] with roughhewn posts, beams, and corbels; vigas; an interior flagstone courtyard; and numerous rustic embellishments of wood and wrought iron.” (ASM)

The HABS study correctly addressed the many of the building’s materials, features and spaces as emblematic of the Pueblo Revival style. However, a few of the details are more accurately attributed to a blend of Territorial Revival with the Pueblo Revival style. Most notable elements attributable solely to the Territorial style are the shallow pediment wooden door and window casings.

Fortunately William Lumpkins both published his own books and had a retrospective book published within his life time. One book published prior to the construction of the Black residence was “Modern Spanish-Pueblo Homes” 1946, Lumpkins discusses his understanding of the historic evolution of the Pueblo and Territorial styles and their distinctive design attributes. He calls the style ‘Spanish – Pueblo’. He elaborates the discussion into his personal architectural philosophy.

“An architectural style which becomes frozen and static ceases to be architecture. The form of the building must meet the needs of the people, the social order, the climate and the local material. This is the twentieth century and we have automobiles, bathrooms, sinks and glass. Any interpretation of an adobe or Spanish-Pueblo house which does not take these factors into account and solve them is as absurd as the grain elevator housed in an exterior form of a Gothic church.
Glass and its use with the adobe is of special interest. We have a climate here [New Mexico] which gives us about three hundred and sixty days of sunshine. All heat comes from the sun in the form of a radiant ray which is cold. This ray will penetrate glass and only become heat when striking an opaque surface such as floors and walls. A house with a large exposure of glass to the south will make it possible to turn the heat off at 9:00 in the morning and usually will not be necessary to turn it on until 5:00 in the evening."

“Adobe, despite the development of many substitutes for it, is still the best building material for this area. Dollar for dollar there is no better insulator than adobe. … With the use of newly developed waterproofers [sic], adobe is not a material of the past. It is plentiful and easily worked, which gives it an advantage over other materials.”

Throughout the rest of the book as he presents each homes design, he discusses the attributes of each design. Many of the articulated design attributes are seen in the design of the Black’s residence. He discusses the attributes of:

- Long portals for protected outdoor living.
- Insulating the bedrooms from the noise of the living room with a closet and hall.
- Kitchens with views to the front courtyard for control of the front entry by the housewife.
- A patio with a high wall above eye level will become another living room.
- The wall’s “batter-in” should begin just above the window head line.
- Living rooms should open onto private patios.
- Extensive use of glass along the south and garden side of the house.
- Radiant heating.
- Relation of kitchen to a back portal for serving outdoor meals.
- Built-in barbeques in a covered area as an outdoor living area.

Shortly before his 1967 return to New Mexico he again publishes a book “La Casa Adobe” (1961) and republished the book in 1986. The book espoused the use of adobe and passive solar heating. The designs in this book often step beyond a floor plan and elevation or perspective but they also incorporate designs for fireplaces, doors, windows and corbels. Again the book emphasized portals and enclosed courtyards for cooling.

The retrospective book “Pueblo Architecture and Modern Adobes: The residential designs of William Lumpkins” (1998) contains 48 un-built designs of the architect’s starting in approximately 1965. These designs “Each synthesized Lumpkin’s dynamic interaction between anthropology, history, memory, nostalgia, and modern architectural practice” (pg.2). Of interest in our analysis of the Black residence is the attention given to details in each of these designs. Specifically striking are the myriad of ceiling designs many of which where incorporated in the Black Residence. His reflected ceiling plans show peeled aspen poles, squared beams, herring bone wood sheathing, and coved plaster between vigas. Again the designer’s penchant for exploring the details of a design is shown with sheets of door and fireplace designs.

The design of the Black’s residence shows the natural evolution of the architect as he explored design concepts. The residence is highly significant as it exemplifies the influences that were shaping his aesthetic and design philosophy; historic precedence, adobe construction, solar energy, natural cooling and functionality.

B. Major Contributors to the Overall Visual Character of the Residence

1. Floor Plan and Massing
The design of the floor plan an obtuse “U” shaped plan with a garden wall to create an interior courtyard of is very unique. First, as noted by William Lumpkins in “Modern Spanish-Pueblo Homes”; historically isolated buildings of the southwest for both security and climate control typically built in a courtyard shape. (pg. 5) Lumpkins extolled the Territorial styles use of a portal, covered porch, which he combined with a courtyard for capturing the naturally cooling breezes. Historically in San Diego many homes were built on a similar court yard or “u” shaped design. However, historically the courtyard was part of the family’s private inner sanctum; visitors would first enter through an entry hall or salon. However, the Black residence reverses the typical Spanish/Mexican floor plan and has guests approach the residence by first traversing the courtyard and then entering the home. Following Lumpkins interest in promoting passive solar heating the house is situated with its longest exposure facing south. The massing of the building has strong rectangular lines with a slight taper and rounded corners; typical of the style.

Figure 97: Historic photo of University House, circa 1950.

2. Roof and Roof Features
The structures flat roof and parapet design are characteristic of the style. The Pueblo design consist of a series of rectangular building masses, of varying parapet and roof height, that create an eclectic but aesthetic form. The pueblo design is further enhanced with the use of covered porch walkways or portals. The portals create a strong shadow line, or voids, cleverly counterbalancing the solid massing of the thick adobe walls. The homes five original fireplaces and chimneys, and copper leader heads and downspouts are further distinguishing attributes characteristic of Pueblo Revival design.

3. Windows and Doorways
The residences deep simple window and door openings are characteristic of the pueblo revival style and the wood cased openings with a shallow pediment are representative of the Territorial style. Historically windows would have been modest in size. The buildings modern era characteristics are evident with the inclusion of large areas of plate glass in the living room, library and east bedroom. One decorative stain glass leaded window decorates the entry hall.
4. **Projections and Recesses; Porches or Arcades**

The residence’s long, inset portals with roughhewn posts, beams, and corbels are a dominate character defining feature of the residence. The primary portal surrounds three sides of the courtyard, ringing the inside of the obtuse “u” shaped plan. The deep portal creates a strong shadowed void that juxtaposes the solid massing of the adobe walls. A second portal on the south side of the south wing has been enclosed and is referred to as the gallery. Originally the south wing, which was the primary bedroom wing, was flanked by portals on both the north and south elevations a design that would have promoted cooled natural ventilation. In order to maintain the historic character the portal configuration should be maintained or rehabilitated as a character defining feature.

![Figure 98: Historic photo of University House, looking west at approach, circa 1950.](image)

5. **Exterior Materials, Color or Patterning**

The original structure is articulated by little decoration, simple design, and minimal fenestration (except on the south side), all of which are important features of adobe construction. It is actually the lack of color or patterning which is the unique qualifier for this style of architecture.

6. **Trim and Secondary Features or Decorative Scrollwork**

On the exterior all of the trim or secondary features are also structural in nature. The peeled pole columns, hand hewn perimeter beam and peeled pole roof rafters of the portal are purposefully rustic in nature. In order to maintain the historic character the rustic and artistic hand characteristics of the elements should be maintained as a character defining feature.

The one decorative feature is the courtyard entry gate this fanciful creation of wood panels, turned spindles and wrought iron evoke the rustic artistic sensibilities of the entire residence’s design. In order to maintain the historic character the rustic and artistic hand characteristics of the element should be maintained as a character defining feature.
7. Composition and Organization of the Site Plan
Mr. and Mrs. Black could have chosen anyone of multiple ocean front and cliff-side locations on their 248 acre property. However, this site, now 6.91 acres, was specifically chosen by the original owner for its dramatic views south along the coastline and the canyon habitat. The residence is situated well back from the street and the site retains the original driveway approach across a broad flat yard. Additionally, the location of the house on the site maximizes both the view and the southern exposure of the primary living wing while using the mass of the house to shelter an inner courtyard from the prevailing coastal breezes. In order to maintain the historic character, the current configuration of the site plan should be maintained as a character defining feature.

Figure 99: Landscape elements, looking out to the cliffs.

C. Qualities and Workmanship of Exterior Surfaces

“...The close-up visual character is often the result of materials that differ sharply in their color and texture. They often convey that sense of craftsmanship and age that distinguishes historic buildings from other buildings. It is important to understand that many of these materials can be easily damaged or obscured by work that affects their surfaces. ... There is an almost infinite variety of surface materials, textures and finishes that are part of a historic building's character which are fragile and easily lost.” (NPS)

1. The Building's Specific Materials: Adobe, Stucco, Wood, Stone, and Brick
The most significant character defining feature of the residence is the refined but rustic nature of all of the construction materials. The structure is articulated by little decoration, simple design, and minimal fenestration, all of which are important features of adobe construction. Earthen construction has a long tradition used throughout the Spanish influenced “New World”, including in
southwestern regions of the current United States. Adobe construction was used not only because the materials were readily available, but also because of the extreme temperature fluctuations in this region. As opposed to regions with dramatic seasonal changes, the Southwest is marked by daily fluctuations, cold nights, and hot days throughout the year. Thick adobe walls paired with minimal openings reduce the effects of cold nights and hot mid day temperatures. When modern era architects such as Lumpkins once again picked up building with these materials they recognized that the inherent properties of adobe construction were still pertinent.

Unlike a historic period adobe’s mud plaster and lime whitewash; this home has a stucco exterior finish in a light sand texture and the stucco has always been painted white, which emulates a historic lime finish.

The peeled pole columns, rough sawn perimeter beam and peeled pole roof rafters of the portal are purposefully rustic in nature. The craftsmanship of the finish on these materials is discussed under craft details.

The paving materials that are character defining features are primarily seen in the interior entry courtyard. The brick basket weave paving in the portals is character defining by its lack of use of mortar or grout. The random flagstone is a popular material for this style home and is noteworthy for its use of contrasting colored wide grout joints.

2. Craft Details
The peeled pole columns, rough sawn perimeter beam and peeled pole roof rafters of the portal are purposefully rustic in nature. The unique finishes were explained in the oral interview with William Black, Jr.

Mr. Black told the story of his first summer working at the site; helping to build the home. He had been assigned the responsibility of cutting rebar with a welding torch. While focusing on his assignment, he accidentally charred a neighboring pile of peeled poles (vigas) awaiting installation. He tried to correct the mistake by wire brushing the burned surface. Unfortunately this did not correct the mistake and he had to inform his parents. To his surprise his parents liked the look created burning, charring and scraping the wood surface, and the next day he was put to work creating that finish for all of the peeled pole vigas.
The tile courtyard octagonal mosaic appears to be a Native American motif potentially from the New Mexico area. Unfortunately little is known regarding this mosaic and additional research is needed. Although not much is known of its origin due to its unique artistic qualities it is a character defining feature.

The hand-built, intricately patterned wood doors adorn both the exterior and interior. William Black Jr. recalls observing the work of a single Hispanic craftsman at the site. This craftsman was responsible for site building all of the wood panel doors and the carvings on the cabinetry. Given William Lumpkins penchant for sketching door designs it is likely the local craftsman worked from sketches provided by the architect. Some designs, evocative of the designs extant on the Black’s residence, can be seen in Lumpkin’s book La Casa Adobe, 1961. For example the Black residence’s garage doors are nearly identical to a design found on page 8; interior doors on page 19 matches the Black residence’s front, master, and guest bedroom doors. Door A shown on page 38 is similar to the Black residence’s library doors from the entry hall.

In order to maintain the historic character the rustic and artistic hand characteristics of the elements should be maintained as a character defining feature.

D. Evaluating the Interior

Individual Spaces and Spatial Relationships
The obtuse original “U” shaped floor plan separates the internal function of each wing, the private bedroom south wing, the public central west wing, and the service north wing. The room with the most interesting special relationship is the barbeque room. This room sits at the hinge point between exterior and interior, as well as between service and public areas of the residence. The barbeque room was designed as an extension of the inner courtyard; an outdoor living room. The novelty of the room is while it opened onto the inner courtyard it also enjoyed views to the private back yard and at one point perhaps the ocean. This room is significant in its evocation of the architect’s ideas on exterior living rooms. In order to maintain the Period of Significance’s feeling and association, the current configuration should be maintained as a character defining feature and additions should be evaluated for their effect on the spatial relationships.
Interior Features that are Part of the Building; or Distinctive Surface Materials and Finishes

1. Flooring
The entry hall, library and barbeque room are finished in a waxed terra cotta tile, 6” x 9”. These tiles are a character defining feature.

2. Walls
The most significant character defining feature of the Black Residence is the rustic but refined nature of the adobe construction. The structure is articulated by little decoration, simple design, and minimal fenestration, all of which are important features of adobe construction. In order to maintain the Period of Significance’s feeling and association, it is necessary to maintain and rehabilitate the adobe walls with the extant smooth plaster texture as a character defining feature.

3. Doors and Wooden Lintels
The 24 hand-built, intricately patterned wood doors adorn both the exterior and interior. William Black, Jr. recalls observing the work of a single Hispanic craftsman at the site. This craftsman was responsible for site building all of the wood panel doors and the carvings on the cabinetry. Given William Lumpkins penchant for sketching door designs it is likely the local craftsman worked from sketched provided by the architect. Additionally, the heavy wood lintels over the doorways of the library, foyer and living room are character defining features. In order to maintain the historic character the current doors and lintels should be maintained as a character defining feature.

The majority of the pre-manufactured doors are original fabric of the residence; they should be maintained or reused where feasible, but are not character defining elements.

4. Windows
Within the gallery that was enclosed by the 1969 addition to the private residence area of the house there are three 6/6 double-hung windows. The majority of the windows are original fabric of the residence; they should be maintained or reused where feasible, but are not character defining elements.

5. Ceilings
The ceilings are a major decorative feature in almost every room. Of the historic ceiling types three types are historically significant; 1) peeled pole beams to emulate Pueblo style vigas, with either a coved plaster ceiling in-between or a wood plank ceiling in a variety of designs; 2) Territorial Style boxed beams with wood plank ceiling in a variety of designs and 3) rectangular rough sawn lumber with carved corbels and a wood plank ceiling.

6. Tile
The use of tile is in some locations a character defining feature. The elements to take particular note of are the library and east bedroom’s window sills and the barbeque room.

7. Cabinetry
In a few rooms built-in cabinetry is a primary decorative and character defining feature. Cabinetry such as carved bookcases and cabinets are located in the library, dining room and a music cabinet with elaborately carved doors set into the living room’s north wall. The interior of the music cabinet has been heavily altered and is not a character defining feature. In order to maintain the historic character the rustic and artistic hand characteristics of the elements should be maintained as a character defining feature. In the servery the cabinets are original with only minor modifications but they are not hand decorated and are not a character defining feature; they are the primary design feature of this utilitarian room.
8. **Hardware**

The hardware in the house appears to be a combination of original and new hardware for doors, cupboards, and other permanent fixtures. The rooms with the most significant hardware are the barbeque room with its original barbeque-related hardware of wrought iron and cow bell cabinet pulls. The front doors hand crafted entry set is also significant.

9. **Fireplaces**

The residence can boast of a fireplace in every family bedroom as well the library and the living room. Historically the home had five fireplaces. All of the fireplaces reflect classic Spanish, Pueblo or Territorial design elements. Every fireplace is also fitted with a handmade wrought iron screen. These are character defining features and in order to maintain the historic character the rustic and artistic hand characteristics of the elements should be maintained as a character defining feature.

E. **Architectural Non-Contributing and Detracting Features**

1. **Non-Contributing Features**

Non-contributing features are those features that were added to the resource after the Period of Significance or have been heavily altered since their construction. These features can be modified and, in some cases removed, in order to better convey the structure’s Period of Significance and restore the integrity of the resource. The identification of incompatible features and non-historic introductions help to generate recommendations for rehabilitation treatments that can enhance historical integrity.

The resource has been both lightly and heavily remodeled at different points in history. While the complex remains relatively intact in overall mass and scale of the 1950-52 structure, several areas have been added or altered which do not contribute to the historic value of the property.

 a) **Landscape Features**

 The grass lawn that is the primary component of the street vista and which surrounds the house gives a verdant interpretation to the site that would not have occurred during the Black’s occupation of the residence. Oral interviews with William Black Jr. inform that his mother did not like grass and preferred to plant large expanses of red geraniums. The current courtyard plantings are not as verdant as they historically have been. Historic photos should be consulted showing the courtyard as planted soon after completion. Historical accuracy in this area needs to be weighed against the need to reduce the introduction of water to the courtyard area.

 Other non-contributing site features include:
 - Chain link fence for swimming pool security
 - West patio windscreens
 - East patio windscreens
 - Driveway pilasters

 b) **Guest Suite Addition 1960 - 62**

 Designed by William Lumpkins ten years after the original home and for the original clients this addition has gained significance in its own right. The design is sympathetic to the characteristics of adobe construction; while being constructed out of wood frame and stucco. The design is also situated on a secondary facade that is not historically significant. However, the addition does not contribute to the historic character of the original residence.
The remodel of the former master bath for Mr. Black as a new residential kitchen for the chancellor’s private residence does not detract from the historic character of the residence. The remodel having occurred in secondary spaces of the original residence was an appropriate rehabilitation approach.

d) Commercial Kitchen 1972
The remodel of the former residences kitchen as a commercial kitchen does not detract from the historic character of the residence. The remodel having occurred in secondary spaces of the original residence and within the footprint of the original room was an appropriate rehabilitation approach.

e) Aluminum Window Infill East Bedroom, Unknown date
The replacement of the original wood picture window with an aluminum window is an inappropriate substitution of materials. However, the replacement having occurred wholly within the original opening makes it possible to easily reverse this inappropriate infill.

f) Light Fixtures Exterior and Interior, unknown or various dates
Several exterior light fixtures have replaced original light fixtures. Enough extant original light fixtures exist that reproduction light fixtures can be manufactured and installed. Loose wiring and surface run conduit festoon the building exterior and interior. Interior several rooms have had non-historic lighting added such as track lighting. During this rehabilitation the opportunity exists to bury electrical wiring and conduit as well as creating appropriate additional lighting.

g) Sheet Vinyl Flooring, unknown or various dates
Sheet vinyl flooring was installed in a few rooms over the original historic floor. The historic floor may have been retained below the replacement flooring. However, the means by which the replacement flooring was adhered to the original historic floor may preclude the rehabilitation of the historic flooring. Where feasible either the historic flooring should be recreated or compatible new flooring should be installed.

h) Carpeting, unknown or various dates
Carpeting was installed in several rooms over the original historic wood floor. The retention of the original historic floor allows for the removal of the non-contributing carpeting and the rehabilitation of the original wood flooring.

i) HVAC System
A HVAC closet, air plenum and registers have been added to the south residential wing. These are to be removed.

2. Detracting Features
Detracting features are those that negatively influence the integrity of the resource. While several alterations have been made to the Black Residence building and grounds, none of the additions or remodels are irreversible detractors. The detracting features that need to be reversed occurred during the 1969 and 1986 remodels and additions. The significant detracting features are:

a) Gallery, Trellis, and Family Room Addition 1969, 1973 and 1980
The enclosure of the south wing’s south portal changed a primary circulation route. The circulation changed from an exterior route to an interior route; it did not change the configuration of the route. The design is reversible and the alteration occurred on a secondary exterior façade. The enclosure did significantly alter the air circulation of the...
residence. The enclosure diminished the exterior air ventilation for the master suite and the guest bedroom; it had no effect on the east bedroom’s ventilation. The design of the enclosure however is not sympathetic to expressing the original historic character of the south portal and should be redesigned and rehabilitated to both improve air circulation and express the original character of the space.

A wooden trellis was also added to this elevation to assist with shade issues. The wooden trellis is an inappropriate architectural element for the architectural character of this home. In addition the trellis element was designed to perfectly mimic the portal’s posts, corbels and beams; such mimicry is discouraged as it can cause a false sense of history. This element should be removed.

The expansion of the portal as a family room and again as a larger family room severely altered the character of the space. It altered the relationship of the rooms to each other, to the east rear patio and to the roof top viewing platform. The design is reversible and the alteration occurred on a secondary exterior façade however, the design altered the aesthetic of this elevation as the design was neither sympathetic to the original portal design nor the characteristics of adobe construction. This element should be removed if as part of the rehabilitation, if additional living space is needed any additions should be sympathetic to the original design while not creating a false sense of history.

b) Reception Room Addition 1985-1986
The addition of the reception room was placed appropriately on a secondary façade and in a location that did not necessitate removing any character defining features. The addition is also reversible a second tenant for appropriate additions. The addition while constructed of wood frame and stucco does emulate adobe construction. However, the design relies
heavily on square stucco pilasters connected to the main structure with a wooden trellis that is not sympathetic to the original architecture. If the reception room is kept the exterior design should be revised to compliment but not copy the original residence.

The interior of the reception room does not compliment the original architecture. Several character defining features found in the original structure should be emulated but not copied and incorporated in the reception room’s revised design.

Figure 103: South façade of reception room addition.

Figure 104: Ceiling in reception room.
V. Condition Assessment

In the conditions assessment each part of the building is examined with respect to its existing condition. The conditions assessment is intended to identify the locations, types and extent of deterioration and to help determine appropriate rehabilitation treatments for each building component.

A. Condition Assessment Terminology
For this report the following assessments were used; “good”, “fair”, and “poor”, with the elaboration of “good to fair” and “fair to poor.” The terminology has the following definitions:

- Good- building component needs only minimal attention as would be expected with routine maintenance.
- Fair- building component needs some intervention or replacement of parts.
- Poor- building component needs substantial intervention or major replacement, possibly near failure or end of useful life expectancy.

The use of “good to fair” (“fair to good”), and “fair to poor” (“poor to fair”) are used when the condition falls somewhere between the primary three descriptive terminologies. If a building component shows some evidence of deterioration that may suggest further deterioration of inaccessible areas, a professional assessment was made that the hidden area must be assumed to also have some deterioration.

B. Architectural Condition Assessment

The resource is overall in fair to good condition with a few significant adverse conditions noted. The resource has such constant and thorough surface maintenance that, other than a few noted cracks, there are only a few potential issues that might significantly affect the historic fabric. Conversely, the constant ongoing maintenance may be masking conditions that would otherwise be visible.

C. Building Components

The following are typical building features that can be found in most if not all spaces. Specific conditions of these features are described per exterior elevation or room. Unique elements that are only found in a few locations, such as built-in artwork and wrought iron details are describe under the location where they occur.

1. Foundations

The foundations are in good condition. “A manometer floor-level survey was conducted on March 25, 2009 on the interior floor surface of the existing structure. The manometer is a simple water-level device used to measure points of relative elevation on a floor or other surface. … given the age of the structure and the nature of construction, e.g. multiple additions, there are no significant areas of concern that indicates floor movement above and beyond what would normally be expected.” (Terra Pacific)

2. Structural System

The structural systems of the University House from an architectural perspective are in good condition with minimal visible signs of structural distress. The only areas of distress are localized wood dry rot and termite damage in the inner courtyard portal. Some deterioration either dry rot or termite is expected where vigas or beams pocket into adobe walls. (For further information see Chapter 7, Structural Engineering Report and Chapter 10, Water Infiltration.)

3. Adobe Walls

The modern era adobe walls are in good condition. Typically, traditional adobe walls are highly susceptible to deterioration due to moisture, vegetation and pests/vermin. The majority of the adobe walls on the University house show no such deterioration and are well-protected by their stucco finish.
The sole area in poor condition is along the exterior of the living room wall below the picture window. In this location the Torrey Pine tree has lifted the patio slab which is now tilting towards the house and ponding water against this wall. Additionally, the exposed site walls that do not have a protective coating of stucco are in fair condition showing signs of surface erosion due to the weather.

There is no sign of interior plaster wall detachment or rising damp.

4. Exterior Paving Materials and Interior Flooring Materials
The brick paving in the portal and the random flagstone of the inner patio are in good condition. The octagon shaped Native American inspired tile medallion is in fair condition. The medallion has some surface spall and settlement cracks. These breaks in the surface appear to be holding moisture and may lead to additional deterioration. The concrete paving at the rear east patio has settled up to three inches and the redwood expansion strips have rotted. The concrete paving at the rear west patio has lifted around the Torrey pine tree; this is causing an uneven walking surface and moisture to pool against the house in the location of the living room, and the redwood expansion strips have rotted. The concrete patios on the east and west are in poor condition.

The majority of the hardwood flooring is camouflaged under carpeting so it is not possible to determine the condition of the floor in these areas. In the living room where the wood plank floor is exposed the floor is in fair to poor condition. The wood plank flooring is an engineered wood that appears to be delaminating, rotting and wearing through the veneer layer in multiple locations. Some of the moisture damage maybe due to the lifted slab from the Torrey Pine tree’s roots. The lifted slab is shedding water, which pools against the house. The wood parquet floor in the powder room is in good condition.

The terra cotta tile is in good condition showing only minor surface wear marks due to foot traffic. The marble flooring in the master bath has been patched and is in fair condition. The remainder of the
bathroom tile floors are in good to fair condition. The linoleum and vinyl flooring is in fair to good condition.

5. Doors
The doors both hand carved and pre-manufactured are in good to fair condition. While the doors and lintels are from several different designs they are almost all from the original construction. Most of the damage to the doors is due to either everyday wear or exposure to the elements. The door handles seem to have had the most wear and are in fair condition. Some of the handles are loose or ill fitting but all appear to be salvageable with some corrective maintenance.

6. Windows
The one decorative window appears to be in good condition but should be inspected by a stain glass artist. Most of the damage to the double hung and casement wood windows is due to either everyday wear or exposure to the elements.

7. Lintels
In general the concrete lintels are in good condition. The three wooden lintels are in good condition.

8. Ceiling
Vigas with wood board ceilings are in good condition showing only minor staining from roof leaks. The vigas with coved plaster ceilings are in fair – good condition due to cracks between the plaster and the wood. Plain plaster ceilings show some signs of staining from prior roof leaks. Prior roof leaks may have caused some weakening or detachment of the plaster, these ceilings are in fair – good condition.

9. Roof
The portal roof in general is in good to fair condition. A few of beams and corbels at the portal roof on the inner courtyard show severe damage. If this condition is not soon repaired it may cause severe damage to the roofing. The roof of the main structure has numerous roof penetrations that could be a source for past water infiltration. Currently the house is unoccupied but there are no reports of roof leaks.

ABB noted:
“The existing roofing system consists of 3-ply built up bitumen plys with a mineral surface cap sheet. The cap sheet is also attached to the inside of the parapet walls. There are areas that are not adequately sloped resulting in ponding. There are numerous attachments and penetrations of mechanical equipment pipes and conduit all of which need to be disconnected, repaired and reoriented as needed, then replace in coordination with the new roof decking and membrane.

There is a large, mature, overhanging Pine tree on the north-west side of the house. The branches extend over a large portion of the roof and are shedding significant amounts of needles, sap, cones, etc. onto the roofing surface. This is a problem and will continue to be an issue in the future.

The low slope roofing is drained via scuppers through the parapet walls and into downspout conductor heads.”

Scuppers, gutters and downspouts are in good condition needing only some localized repair.

10. Fireplaces and Built-in Barbecue
The visual condition of all five historic chimneys and barbeque appear to be in good to fair condition, they all have a tile flue lining; showing only some cracks, deteriorated gas log lighters and a few stiff or frozen dampers. The Living Room fireplace, fire box has a crack in the rear from rain damage. The
chimney was built with a double flue which is not recommended for proper functioning. The Library damper is rusty and stiff and set too low for proper functioning. Master Bedroom damper is stiff but working, it has a flue with steel lintels that have lost some support masonry. Barbecue’s blade damper is rusted shut. The wooden sign, “It's later than you think,” is a combustible in the hot area and shows some signs of charring.

D. Exterior Description

1. Walls

Methodology of Assessment
The elevations were assessed starting inside the interior courtyard on the north elevation of the south wing at the front door and continuing around the interior courtyard in a clockwise direction. The description then jumps to the outside of the “u” shaped plan, starting with the south façade of the south wing, the west façade of the west wing and finishing with the north façade of the north wing. The individual elevations were described in the following order: walls, elevation elements, doors, windows and finishing with either the exterior grade or pavement. The roof components, such as overhangs, beams, and under side of roof, are discussed under the roof assessment.

Figure 106: Courtyard tile.

a) Interior Entry Courtyard and Façades
The interior entry courtyard is in fair condition; the random flagstone needs to be reset in places and the octagonal ceramic tile mosaic needs to be reviewed by an art conservator. The patio east adobe brick wall is showing signs of weather exposure. The rustic wood entry gate is in very poor condition.
b) Portal
The interior courtyard portal is in fair to good condition. One post, corbel and beam show severe deterioration. There may be additional hidden damage.

c) South Wing – North Façade
The adobe walls are in good to fair condition. There is no evident basal erosion or plaster adhesion issues. The main entrance is a heavy, carved wooden panel door that due simply to age is in good to fair condition. The current light fixtures are not original and heavily corroded.

d) West Wing – East Façade
The adobe walls are in good to fair condition. There is no evident basal erosion or plaster adhesion issue. The two pairs of French doors and the triple casement window are in good condition.

e) North Wing – South Façade
The adobe walls are in good to fair condition. There is no evident basal erosion or plaster adhesion issues. The barbeque room’s, pair of carved wooden doors that open onto the inner courtyard portal, and their wrought iron hardware are in good condition. A cast iron bell shows some deterioration, but this may be due to its extreme age. A metal conservator should examine the bell. The antique wrought iron butcher’s sign is in good condition. The windows of the pantry and office are in good condition.

The two pictorial works of art should be examined by a conservator.

f) South Wing - South Façade
The adobe walls are primarily in good to fair condition. There is no evident basal erosion or plaster adhesion issues. The main exception is the failing adobe wall and plaster below the living room picture window. The large picture window in the east bedroom was replaced with an aluminum sash window. The aluminum sash window is in poor condition. The aluminum is corroding heavily. The non-historic family room and gallery were poorly built from the beginning as simply an enclosure of a portion of the former patio. The enclosure a wood frame, stucco-coated wall, dominated by a band of aluminum frame, plate glass picture windows topped with a narrow band of awning transom lights. The trellis structure over the rear east patio area is in fair to poor condition.

g) West Wing - West Façade
The reception room addition is in good condition, a wood frame trellis is in fair condition and the windows and doors are in good condition. The rear of the barbecue room has a replacement aluminum frame sliding door which is in poor condition and is set adjacent to a wood frame picture window that is in poor condition. A modern wood frame trellis is in fair condition. The concrete stairs with a stuccoed concrete wall and wrought iron railing is in good condition. The door to the basement is in fair condition due to excessive moisture that collects on the lower walkway, damaging the door.

h) West Wing – South Façade
The adobe walls are in good to fair condition. There is no evident basal erosion or plaster adhesion issues. The doors and sidelights are wood replacements of the originals and are in good condition.

i) North Wing - North Façade
The wood frame and stucco guesthouse addition is in good condition. The windows have
exposed metal hinges that are in fair condition.

The window on the north side of the maid’s quarters/office is in good condition, as are the two sets of glazed double doors. The door’s wooden screens are in fair condition. The portal red brick surfacing and the concrete staircase are in good condition. A low four- to five-foot adobe brick wall surrounds the patio, forming a service/drying yard. This wall is in poor condition showing signs of weather erosion. The three garage wood tilt-up doors are in fair condition. The doors are embellished with decorative paneling and applied diamond designs which need to be refurbished.

2. Porches, Patios, Fences, Site Walls and Windscreens
There are several porches and patios at the University House that together encircle most of the exterior of the building.

On the northwest side of the maid’s quarters/office is an elevated portal with corbels, posts, and beams in good condition. A low four- to five-foot adobe brick wall surrounds the patio, forming a service/drying yard. This wall is in poor condition showing signs of weather erosion.

The rear west patio is in poor condition. The redwood expansion joint battens have rotted and the patio has lifted in some areas causing water to pond against the building and a tripping hazard. The wood of the staggered freestanding windscreen is deteriorating and the foundation piers have been undermined by the receding bluff edge.

The concrete rear east patio and 1980 wooden trellis with posts, beams, and corbels are in poor condition. The patio has settled approximately 3 inches and has voids under the finish. The redwood expansion battens have rotted. The wood and Plexiglas windscreen has deteriorated and is precariously perched on the retaining wall.

Adobe site walls at rose garden, interior courtyard, service yard, driveway, and east patio are in poor condition with signs of heavy weather erosion.

3. Chimneys
There are several small chimneys corresponding to each of the fireplaces in the interior of the house they are in good condition.

4. Exterior Lighting
All historic and non-historic light fixtures are in fair condition showing corrosion from salt air exposure.

E. Condition Assessment of Interior
As part of the prior UCSD University House Renovation Investigative Study, May 25, 2004, the plumbing waste lines were viewed with a camera showing heavy deterioration and a sampling of the electrical conduit was unburied from the wall and was heavily rusted. For a discussion of the mechanical, electrical and plumbing conditions please see Chapter 8 for a complete discussion.

1. Residential South Wing
The residence’s southern wing is in good to fair condition. The original construction was of a higher quality than subsequent additions. The University enclosed the south portal in 1969, and the former walkway is now referred to as the “gallery.” The gallery and family room addition are in fair condition.

A visual inspection of affected areas revealed the presence of water damage, fungal-enzyme staining, and/or fungal growths. The limited Microbial Investigation found the following concerns:
a) Front Entry Closet
Visible water damaged observed on the ceiling. Moisture intrusion through the roof is most likely the source.

b) Kitchen 1
Suspect fungal growth observed on the wall behind the refrigerator. Moisture intrusion from the refrigerator is likely the source.

c) Pantry 1
Suspect fungal growth on walls and shelves. Unventilated moisture is most likely the source.

d) Master Bedroom/Bathroom
(i) Water damage is observed in the northeast corner of the bedroom. Water damage and suspect fungal growth was observed on wall, baseboard and carpet materials. Moisture intrusion from the exterior is most likely the source.
(ii) Suspect fungal growth was observed on the windows and windowsills. Unventilated moisture is most likely the source.

e) Bedroom/Bathroom 2
Suspect fungal growth was observed on the windows and windowsills. Unventilated moisture is most likely the source.

f) South Entry
Water damage observed at bottom of exterior doorframe. Moisture intrusion from the exterior is most likely the source.

g) Bedroom/Bathroom 3
(i) Water damage is observed around west exterior window. Moisture intrusion from the exterior is most likely the source.
(ii) Suspect fungal growth was observed on the windows and windowsills. Unventilated moisture is most likely the source.

h) Hallway (Gallery)
Water damage observed at bottom of exterior doorframes. Moisture intrusion from the exterior is most likely the source.

i) Family Room
Water damage observed on windowsills and around windows. Moisture intrusion from the exterior is most likely the source.

j) Library
(i) Water damage is observed around west exterior window. Moisture intrusion from the exterior is most likely the source.
(ii) Water damage is observed on the wood ceiling. Moisture intrusion through the roof is most likely the source.
(iii) Suspect fungal growth observed on bookcases. Unventilated moisture is most likely the source.

k) Powder Room 2
Suspect fungal growth was observed on the windows and windowsills. Unventilated moisture is most likely the source.
l) Living Room
 (i) Water damage observed at bottom of exterior doorframes. Moisture intrusion from the exterior is most likely the source.
 (ii) Suspect fungal growth was observed on the doors and cabinetry of the closet/bar. Unventilated moisture is most likely the source.

2. Public West Wing
The residence’s west wing is in good to fair condition. The original construction was of a higher quality than subsequent additions. The University reception room addition, constructed in 1985-86 is in fair condition.

The limited Microbial Investigation found the following concerns:

 a) Reception Room Storage
 Visible water damaged observed on the ceiling. Moisture intrusion through the roof is most likely the source.

 b) Stairs to Utilities Room/Utilities Bathroom
 Suspect fungal growth observed at base of northeast corner wall.

 c) Utilities Room/Utilities Bathroom
 (i) Visible water damage observed on exterior doorframes, walls and flooring.
 (ii) Visible water damage observed around the shower area.
 (iii) Suspect fungal growth was observed on the windows and windowsills. Unventilated moisture is most likely the source.

 d) Kitchen 2
 Suspect fungal growth was observed on the windows and windowsills. Unventilated moisture is most likely the source.

3. Service North Wing
The residence’s north wing is in good to fair condition. The original construction was of a higher quality than subsequent additions. The barbeque, barbeque cover and storage doors do not operate smoothly. The guest suites bathroom fixtures and fittings are of poor quality. The garage mural of a horse corral in an undeveloped landscape, painted by Keith Bright and dated 1955, is in good condition.

The limited Microbial Investigation found the following concerns:

 a) Barbeque
 Visible water damage observed on exterior doorframes on the north wall. Moisture intrusion from the exterior is likely the source.

 b) Pantry 2
 Suspect fungal growth observed on walls and shelves. Unventilated moisture is most likely the source.

 c) Guest Bedroom/Bathroom
 (i) Visible water damage observed under west window. Moisture from the exterior is likely the source.
 (ii) Visible water damage observed on sub-floor of closet where kitchenette refrigerator once resided.
 (iii) Suspect fungal growth was observed on the windows and windowsills. Unventilated
moisture is most likely the source.

d) Office/Maid/Maid's Bathroom
 (i) Visible water damage along the south exterior wall. Moisture from the exterior is likely the source.
 (ii) Suspect visible water damage on the ceiling of the Maid's Room. Moisture through the roof is likely the source.
 (iii) Suspect fungal growth was observed on the windows and windowsills. Unventilated moisture is most likely the source.

e) Garage
 (i) Visible water damage along the ceiling. Moisture through the roof is likely the source.
 (ii) Suspect fungal growth was observed on the window and windowsill on the northeast wall. Unventilated moisture is most likely the source.

f) Basement Storage
 Water damage observed on sub-floor/deck and framing. Moisture intrusion from patio is most likely the source.
VI. Treatment Recommendations

Within the Secretary of the Interior's Standards for the Treatment of Historic Properties there are Standards for four distinct approaches to the treatment of historic properties: preservation, rehabilitation, restoration, and reconstruction.

Preservation: focuses on the maintenance stabilization and repair of existing historic materials and retention of a property's form as it has evolved over time.

Rehabilitation: acknowledges the need to alter or add to a historic property to meet continuing or changing uses while retaining the property's historic character.

Restoration: depicts a property at a particular period of time in its history, while removing evidence of other periods.

Reconstruction: re-creates vanished or non-surviving portions of a property for interpretive purposes.

A. Proposed Architectural Preservation Treatment Plan - Rehabilitation

As per The Secretary of the Interior's Standards for the Treatment of Historic Properties, and after reviewing this resource, a rehabilitation approach to the structure is recommended.

“Rehabilitation’ is defined as ‘the process of returning a property to a state of utility, through repair or alteration, which makes possible an efficient contemporary use while preserving those portions and features of the property which are significant to its historic, architectural, and cultural values.”

Close examination of the building's construction history and extant materials and features leads to the recommendation that the building can be rehabilitated to serve as both the Chancellors private residence and as a public reception forum for members and friends of the University. A substantial portion of the original Black Residence period remains with only two large scale non-contributing additions to the original footprint. These additions including the family room / gallery in the private residence south wing and the reception room in the west wing.

Given both the importance of the residence as an excellent example of William Lumpkins interpretation of “Spanish-Pueblo” Architecture and the high degree of extant fabric and documentation of the 1949 design; it is recommended that the University rehabilitate the residence. The ongoing issue of the building being used as a public space versus a private residence will be resolved with this rehabilitation design. The building will function cohesively and simultaneously as both a private residence for the chancellor and as a public reception forum.

The resource should be rehabilitated with a permanent series of interpretation panels to tell the unique story of the site and the residence. The Kumeyaay community is to be consulted on the wording of any interpretive panels.

1. **The Secretary of the Interior's Standards for Rehabilitation**

 “The Standards (Department of Interior regulations, 36 CFR 67) pertain to historic buildings of all materials, construction types, sizes, and occupancy and encompass the exterior and the interior, related landscape features and the building's site and environment as well as attached, adjacent, or related new construction. The Standards are to be applied to specific
rehabilitation projects in a reasonable manner, taking into consideration economic and technical feasibility.”

A Rehabilitation Preservation Treatment Plan is guided by the following 10 standards. The proposed rehabilitation design complies with these standards, as illustrated below.

Standard 1: A property shall be used for its historic purpose or be placed in a new use that requires minimal change to the defining characteristics of the building and its site and environment.

The proposed reuse of the structure as the Chancellor’s residence and limited public reception venue is compatible with the original historic function of the residence. The functionality of each wing of the residence will be able to be maintained. The private bedroom wing can be re-used as the private residence wing; the public wing can again be used as the public personification of the residence and the service wing will again support the ancillary functions.

Standard 2: The historic character of a property shall be retained and preserved. The removal of historic materials or alteration of features and spaces that characterize a property shall be avoided.

The proposed rehabilitation will strive to retain and preserve materials and features that represent the historic character of the resource.

Standard 3: Each property shall be recognized as a physical record of its time, place, and use. Changes that create a false sense of historical development, such as adding conjectural features or architectural elements from other buildings, shall not be undertaken.

The proposed rehabilitation will recognize the resource as a physical record of its time, place and use. The work proposed will not create a false sense of historical development and will be physically and visually compatible, identifiable upon close inspection, and properly documented for future research.

Standard 4: Most properties change over time; those changes that have acquired historic significance in their own right shall be retained and preserved.

The only change that has acquired historic significance in its own right is the 1962 guest suite addition. The addition was designed by the original architect William Lumpkins more than ten years after the original residence was constructed and was built by the original owners the Black family during their occupancy of the residence.

Standard 5: Distinctive features, finishes, and construction techniques or examples of craftsmanship that characterize a property shall be preserved.

Distinctive materials may need to be temporarily removed to access hidden areas for the installation of structural reinforcement, new electrical / mechanical systems, the repair of plumbing systems and the installation of a fire and security system. The distinctive features will be reinstalled.

Standard 6: Deteriorated historic features shall be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature shall match the old in design, color, texture, and other visual qualities and, where possible, materials. Replacement of missing features shall be substantiated by documentary, physical, or pictorial evidence.

Construction documents delineating the proposed rehabilitation design shall instruct the contractor to repair rather than replace and where the severity of deterioration requires replacement of a distinctive feature, the new feature will match the old in design, color, texture, and, where possible, materials. Replacement of missing features will be substantiated by documentary, physical or pictorial evidence.
Standard 7: Chemical or physical treatments, such as sandblasting, that cause damage to historic materials shall not be used. The surface cleaning of structures, if appropriate, shall be undertaken using the gentlest means possible. Construction documents delineating the proposed rehabilitation design shall instruct the contractor to use the gentlest means possible.

Standard 8: Significant archaeological resources affected by a project shall be protected and preserved. If such resources must be disturbed, mitigation measures shall be undertaken. No work which disturbs the soil shall be attempted without prior review for archaeological concerns and the appropriate archaeological plan identified. All phases of the project design and implementation shall include ongoing Native American consultation and monitors and the involvement of professional archaeologists.

Standard 9: New additions, exterior alterations, or related new construction shall not destroy historic materials that characterize the property. The new work shall be differentiated from the old and shall be compatible with the massing, size, scale, and architectural features to protect the historic integrity of the property and its environment. Current additions and exterior alterations, family room/gallery and reception room are not compatible with the architectural features of the residence and detract from the integrity of the resource. These additions are proposed to be either removed, redesigned or reconfigured to differentiate from the original fabric while being compatible in massing, size, scale and architectural features to protect the historic integrity of the property and its environment.

Standard 10: New additions and adjacent or related new construction shall be undertaken in such a manner that if removed in the future, the essential form and integrity of the historic property and its environment would be unimpaired. Proposed additions will be designed for the future possibility of removing the new construction.

2. Proposed Architectural Rehabilitation Designs

a) Residential – South Wing
The Living Room will be used as the living room for both the occupants of the residence side of the home and during official University functions. The existing dining room could also be retained for both private use on special occasions and for smaller official functions. The library is used as part of the private residence as either a family room or a combined family room and dining room.

This proposed design solution incorporates three bedrooms in the private residential wing of the house. A fourth bedroom located in the service wing could serve as an additional bedroom for guests or could be the use as a home office. This design sits within the original footprint of the south wing. This design retains each of the existing bedrooms and their bathrooms in their current locations. The family room addition shall be removed and the Library space would now be used as the family room. The enclosed portal will have new posts that will be spaced based on Lumpkins original plans with doors and large expanses of glazed panels enclosing the space yet keeping its open feeling. The new kitchen shall be designed to complement the historic character of the home.

Figure 107: Example of proposed design treatment for gallery.

The new expanded kitchen would open up into the former library which would be used now as both a dining room and family room. Opening up the wall between the two rooms would require removing the existing historic cabinetry along that wall of the library. It may be possible to remove the cabinet and reuse it in another portion of the house. The new laundry room and storage fit into the space that had been the secondary powder room, hall and laundry closet. The existing adobe wall that runs along the enclosed portal, a secondary façade, would receive some modifications to accommodate the new rooms.
b) Service – North Wing

New restroom facilities can be incorporated into the Service North Wing where the former office and maid’s room are located. The restrooms are designed to not disrupt the original doors or windows of the spaces only modifying the layout of the interior spaces. The doorway to access the rest rooms was a former alteration that was made during the 1980s by UCSD. The former guest suite could be used as a fourth bedroom or home office with kitchen support services in the basement space below. A stair case could be designed to access the basement internally from the main floor. Alternatively the basement access could remain from the exterior only and the space could be used for storage.

c) Public West Wing

The reception room that was added in 1985 was not designed in a sympathetic style to the existing historic residence and is recommended to be modified to incorporate appropriate details in the revised design. The exterior columns and trellises are recommended to be removed and a new covered patio will be added to compliment but not copy the historic architecture. The servery will become the main service access during large events. The dining room will be the primary access point to the reception room and will mainly be used for special family dining or small University functions. Occupants no longer need to access the basement since the laundry room has been relocated to the main residential wing and the basement will only contain mechanical equipment and storage. The current commercial kitchen will be brought up to code and be used as the primary kitchen for events.

Figure 108: Proposed Rehabilitation Design – Floor Plan (see following page).
3. Site Sustainable Design Practices
In accordance with University of California requirements, sustainable site features should be incorporated into the project design. Techniques to be considered for stormwater treatment and Low Impact Development include; rain garden bio-retention areas, rain water catchments/ re-use and vegetated bio-swales. Opportunities exist to incorporate these sustainable features on the east and northwest portions of the site. Please refer to Figure 109 for potential locations for sustainable features.

 a) Rain Garden Bio-Retention
 A rain garden is a planted depression that allows rainwater runoff from impervious areas like roofs, driveways, walkways, and compacted lawn areas the opportunity to be absorbed. Rain gardens should be planted with native vegetation. Runoff collected from downspouts could be routed via a shallow underground stormdrain system to low depressions in the existing lawn areas. Runoff from the existing asphalt parking area could be routed to a rain garden on the northwest portion of the site. Due to the proximity of the site to the coastal canyon, and the history of soil erosion problems, it is recommended that all rain garden bio-retention areas include a sub-drain and emergency overflow connection to an underground stormdrain system. The proposed stormdrain system is discussed in the Site Drainage section.

 b) Rainwater Catchment and Re-Use
 Roof runoff from the house could be collected in downspouts and routed to individual rain barrels or larger storage tanks depending on the ultimate design of the roof drainage system. Use of a rainwater catchment system could provide a source for irrigation water for the existing and proposed site landscaping. Collection and re-use of runoff would also reduce the amount of water discharged to the street. If rainwater catchment is to be considered as an option, calculations should be made to determine the sizing, cost and maintenance requirements of the system.

 c) Vegetated bio-swales
 Similar to rain gardens, vegetated swales are designed to accept and treat stormwater runoff. Vegetated swales could be used along the length of the driveways.
Figure 109: Site map showing approximate locations of bio-swales and soil capping over existing soil for utility lines and drainage.
B. Work and Maintenance Recommendations

Overall the building is in fair to good condition with a few significant adverse conditions noted. The resource receives constant and thorough surface maintenance. The constant ongoing maintenance may be masking conditions that would otherwise be visible. As with any adobe or historic building, regular maintenance and repairs are needed. The recommendations are broken into three sections: Repair, Preventative Maintenance, and other interventions, analyses or monitoring that may be required or desirable. Repairs are items that are critically in need of intervention, with the potential if left unaddressed of seriously affecting the soundness of the structure. Preventative Maintenance are those items in need of cyclical attention. The last section is a list of recommendations for other interventions, analyses or monitoring that may be required or desirable.

No discussion has been included regarding repair or maintenance to several areas or elements that are assumed with the proposed rehabilitation to be removed from the project or completely replaced. These areas or elements include the current family room, residential kitchen, commercial kitchen, gallery, east patio trellis, west patio trellis, second powder room, interiors of guest suite and maids/office rooms.

1. General Threats to the Structure's Durability/Repairs

Repairs are items that are critically in need of intervention, with the potential, if left unaddressed, of seriously affecting the soundness of the structure.

a) Moisture

The direst threat to any adobe structure is the presence of water. “Successful stabilization, restoration, and the ultimate survival of an adobe building depend upon how effectively a structure sheds water.”

Water is not only erosive, but it can cause severe problems when it puddles and stagnates. The bricks themselves are also susceptible to the effects of water. The adobe remains extremely unstable if it is not fired. The porous mixture creates a sponge-like effect, and “the higher the water content, the lower the strength.” As the bricks absorb too much water, they begin to swell. The wall may take on a bulging characteristic, which can lead to structural weakness.

Moisture testing is accomplished by collecting samples from wall zones that appear to be wet, weighing the samples immediately after collection, drying the samples in an oven, and weighing them again. The difference in sample weight before and after drying can be used to calculate percentage moisture content of the samples. In practice, ¼-inch holes should be drilled through plasters. Samples can be collected by driving a length of ½-inch EMT or metal conduit into the wall using a hammer. Investigators should record their impressions of the quality of the adobe where samples are collected (resistance offered to the sampling tool, feeling of dampness or dryness, etc). Samples should be removed from the hollow tube and weighed immediately on a balance accurate to 0.01g. The samples should be dried in an oven heated to 100-105°C until sample weights stabilize. Dried samples should be weighed again, and the difference between wet and dry weights divided by the dry weight to determine percentage moisture content. Moisture gradients in the walls can be determined by collecting samples from the surface and nearer the center of the wall (horizontal distribution) and by collecting samples from more than one point along the height of the wall (vertical distribution).

Moisture usually is introduced to an adobe building either from rain due to a faulty roof or by “wicking up” ground moisture. The University House currently has a sound roof and no moisture apparent in the walls. The two most common causes for excessive ground moisture and the attendant possibility of absorption in the walls are poor site drainage, which is not directing the moisture away from the building, and concrete sub-floors that can direct moisture to evaporate through the adobe walls. Solving the site drainage issues will be far less invasive to the building than removing the concrete sub-floors. Therefore, it is suggested that the roof always be rigorously maintained and the site drainage recommendations be incorporated as soon as possible.

b) Site Drainage
While attempts have been made over several years to address the site drainage; a cohesive design that addresses all of the site drainage issues has not been attempted. Addressing the site drainage issues is critical on two fronts first to minimize future bluff edge retreat and second to maintain the soundness of the adobe material. The following recommendations from the architect, civil engineer, landscape architect and geotechnical engineer address the site drainage issues. (See relevant chapters for full discussions)

(i) Civil Engineer Recommendations (Nasland)

(1) Runoff from all roof surfaces should be routed to a gutter and downspout system designed by the Architect. Downspout locations should be tied to an underground stormdrain system to prevent ponding adjacent to the house and prevent overflow to the canyon. Alternatively a rainwater catchment system could be utilized, see the Sustainable Design Practices section below.

(2) The concrete patio to the southwest portion of the house should be reconstructed and designed to flow away from the house and drain to area drains. The area drains should be connected to an underground stormdrain system. The underground system could possibly be routed under the westerly ball room addition in the crawl space to minimize site disturbance. Several material options could be used for the re-constructed patio surface. Options include standard concrete, pavers, flagstone or similar stone. A disintegrated granite surface could be used, provided adequate drainage was provided to prevent water from seeping out the face of the bluff.

(3) The concrete patio to the southeast of the house should be reconstructed to flow away from the house and drain to area drains. The area drains should be connected to an underground stormdrain system. The existing grate inlet should be removed and the outlet pipe to the canyon should be capped and abandoned. Similar to the southwest patio, several material options for the new patio surface could be considered.

(4) The front courtyard drainage could be improved by adding area drains to the landscaped areas and low points in the courtyard paving. These improvements are recommended but not necessary.

(5) The proposed underground stormdrain system should be routed away from the canyon to La Jolla Farms Road or to bio-retention areas.

(6) The City of San Diego should be contacted early in the design phase to determine their preferred stormdrain discharge location and to determine what permits will be required.

(7) Stormdrain system options should incorporate sustainable and Low Impact Development features as discussed in the Sustainable Design Practices section.

(8) The location of the underground stormdrain lines and other stormwater facilities should be carefully designed to avoid, as much as possible, any cultural
areas on the site.

(ii) Landscape Architects Recommendations (WRT)
It is recommended the project include the preparation of schematic landscape design alternatives to address the following issues:

Grading and Drainage
(1) Grading to provide a protective ‘cap’ at targeted areas on the property to minimize excavation and/or disturbance of the site’s cultural resources. This would allow for restoration of the native bluff vegetation and the collection and reuse storm water runoff from the building and pavement. Storm water should be directed away from the house and bluff to ‘rain gardens’ sculpted through selective fill grading and planting of appropriate plant materials to minimize the depth needed for a trenched underground pipe system.

(2) Separate the targeted cap of documented fill with a thin layer of white sand to distinguish the new soil from artifact rich soil below.

(iii) Geotechnical Engineer Recommendations (TPA)
Site drainage should be collected and conveyed to a suitable disposal as determined by the project civil engineer. For earth areas, a minimum gradient of 2 percent should be maintained, with drainage directed away from slopes and approved swales or collection facilities. In order to reduce saturation of the founding soils, positive drainage should be maintained within 5 feet of structures with an away gradient of at least 3 percent. Drainage patterns approved after grading should be maintained throughout the life of the development. In addition, it is recommended that roof gutters be installed with downspouts that are tied into the yard drain system. As is always the case, drains outletting (sic.) onto the slope face are not recommended.

(iv) IS Architecture Recommendations
(1) Capture more site drainage from the rear bluff face patios and direct it to the street side of the property. Try to minimize the amount of moisture that reaches the courtyard area.

(2) Roof runoff should be directed to the north side of the property and sloped away from the building.

(3) Currently some negative site drainage is due to the Torrey pines root system lifting the west bluff side patio slab. Arborists report recommends the following:

“There are two possible solutions. One solution involves removal of the patio, root pruning the pine tree, installation of a Bio-Barrier root barrier, and installation of a new, modified patio. The other solution requires that the tree be removed and the patio be replaced.

Preservation of the tree would require that most of the existing roots be retained. In order to retain those roots, the existing roots would need to be carefully pruned. In order to protect the building a Bio-Barrier would need to be placed close to the foundation of the building. The Bio-Barrier uses a plant hormone to discourage proximal root growth but does not compromise the overall health of the tree. In order to determine the final placement of the barrier, including its distance from the building and its depth, the actual roots would need to be examined. It is likely,
though, that the barrier would need to be installed within 32” of the building, and possibly in direct contact with the foundation. As the tree continues to grow, the grade on the tree’s side of the barrier will be subject to future lifting. Choice of Patio materials for the replacement patio would need to permit this grade change without causing runoff to pool against or enter the building. Sand-set pavers might be a suitable patio material. In addition, the planter bed could be expanded and the patio in that area be reduced to a walkway.

Removal of the tree and replacement of the patio would provide an alternate solution. However, the Torrey Pine in question is a very healthy, mature native tree. The tree has excellent scaffold structure and shows healthy terminal growth, even on the windward side. The tree is situated directly south of the building, providing shade. Preservation of this tree is encouraged.

Suggested Course of Action

All solutions require removal of the existing patio. Removal of the patio would allow further examination of the tree’s roots and the building’s foundation. It is suggested that the patio be removed in the area between the building and the tree and a determination be made regarding the possible preservation of the tree.”

(Chapter 5, Arborist Report, Nathan Robinett)

c) **Parking/Driveways/Built Interpretive Elements**

The Geotechnical Engineer should investigate the source of the cracking and provide a recommendation for repair during the design phase of the project.

Landscape Architect recommends:

(i) Maintain the historic configuration of circulation and parking while exploring pavement types that may reduce stormwater runoff without disturbing soil below.

(ii) Integrate interpretive elements as appropriate to educate visitors about the site’s history in consultation with stakeholders.

(iii) Repair exterior pedestrian pavement, walls and fencing minimizing disturbance to the site.

d) **Site Utilities**

The approximate locations of existing site utilities are shown on the Site Survey (Chapter 3, Exhibit A). Locations are shown per a utility study prepared by Southwest Geophysics in 2005 and available record drawings from the City of San Diego.

(i) **Sanitary Sewer**

The line has been inspected by video and it was determined the pipe is in poor condition. Replacement with a new PVC sewer line is recommended. Connection to the lateral from La Jolla Farms Road should be made at the property line to avoid permitting from the City of San Diego. Please refer to Chapter 3, Exhibit B, for the potential sewer line location and point of connection.

(ii) **Domestic Water and Fire Protection**

The private water lateral to the house should be potholed to determine the condition of the line. If the condition of the pipe is poor, replacement with new PVC pipe is recommended.
During renovations to the house a fire sprinkler system will be installed. This will require a new fire service lateral from La Jolla Farms Road. The size will be determined during the design phase by the mechanical or fire protection engineer. A City approved backflow device should be installed on private property at the property line. A permit from the City of San Diego will be required for the new fire service lateral. Clearing of shrubs will be required to create a location for the backflow device to meet fire department requirements. Please refer to Chapter 3, Exhibit B, for the potential fire service lateral location. The fire service lateral on the University House property should follow the alignment of the existing water line as much as possible.

(iii) Irrigation
Potential improvements to the system recommended by the landscape architect. Minimize the need/use of irrigation water and site maintenance. As-builts for the current irrigation system should be prepared (without disturbing the site). The irrigation system should be reconfigured (without disturbing the site) to meet the needs of the plant restoration and maintenance of appropriate trees and shrubs.

e) Landscape Planting (WRT)

(i) Reestablish the open coastal bluff planting (removal of the lawn). Low growing native and non-invasive exotic species will be composed to retain the open character, frame views and provide a colorful year-round garden. Removal of the lawn means turning off the irrigation system to kill the exotic grass. Seeding of native species would benefit from the protective thatch. A thin soil and/or mulch layer may be recommended to further assist in the restoration of the site. The University and neighbors need to understand the importance of the process and that it may take a few seasons.

(ii) Rehabilitate the walled garden area and foundation planting. To minimize disturbance to the cultural resources old or dead plants should be cut off at the base of the plant. New planting should be with seed or possibly very small containers that will not remove soil.

(iii) Maintain existing trees and selected shrubs. Remove dead trees and those threatening the building. Remove plants at the base, leave the base and root structure to minimize disturbance.

(iv) Provide for functional outdoor entertainment areas. Protect the site from disturbance by use. For example, erecting temporary tent shelter using sandbags instead of stakes.

(v) Prepare a landscape maintenance and management plan for preserving archaeological resources, ancestral cemetery and tribal values.

f) Structural Concerns (MGA)

(i) Adobe - Original Building

(1) Parapet
Brace all parapets that have an h/t ratio greater than 1.5 to 1. Repair any wall deterioration at the roof to parapet line. Bracing is placed diagonally from the back side of the parapet to the roof. The bracing would not be visible from the exterior of the house. The allowable h/t ratio for the San Diego region is 1.5. Some sections of the parapet may require bracing. This will depend on the architectural roof section selected.
(2) Adobe Walls
The adobe walls in Section 1 of the building have an h/t ratio of 6.5. The remaining sections of the building have an h/t ratio between 5.5 and 6. There are several values for the allowable h/t ratio of adobe walls in two sections of the CBC, the historic code provisions and the URM provisions in CBC Part 10, Appendix Chapter 1. The value in ASCE 31 is the same as in Appendix Chapter A-1 of the CBC. The walls are in compliance with CBC Part 10, Appendix Chapter A-1. They do slightly exceed the h/t ratio allowed under the SHBC.

(3) Wall Anchorage
It is necessary to attach the walls to the bond beam. Anchor bolts need to be installed at the top of the wall at the roof line. The bolts should be at a 22.5 degree angle, with epoxy adhering the bolts to the adobe. The bolts would be fastened flat steel plates that lie across the plywood. The straps are screwed into the plywood with wood screws. Plywood may be placed on the entire roof surface to provide for roof covering application and to cover insulation. In such case this plywood may be used as the bond beam.

(4) Bond Beam
The historic provisions of the CBC require a bond beam of concrete or other material. The original building construction plans called for a concrete bond beam, but according to reports, it was not constructed.
Regardless, a bond beam is necessary. It may be constructed of concrete or other material. Construction of a concrete bond beam would require major removals of portions of the wall (parapets) so the option of using other material is being considered.

Construct a bond beam. This should consist of a flat band of plywood around the entire perimeter of the building. It should also be installed adjacent to all interior masonry walls. For interior walls, place the plywood on each side of the wall. The minimum width of the plywood should be 4 feet.

The plywood would be attached to the adobe wall with steel straps connected to anchor bolts embedded into the adobe. The steel straps would be fastened to the plywood. This would restrain the outward movement of the walls and prevent their collapse or major damage.

(5) In-Plane Shear
In-plane shear is within the allowable limits.

(ii) Exterior Trellis
The trellis, if it is to remain, should be attached to the building and braced as necessary.

(iii) Reception Room
The reception area was constructed in 1986.

The 1976 Uniform Building Code contained major changes for earthquake design. While the building was constructed to a lower design value than the current code the existing construction is considered as complying with the life safety intent.
No seismic retrofit work is recommended for the superstructure of the reception room.
The north line of the foundation wall to the first floor line consists of cripple studs with 3/8 inch thick plywood sheathing. This should be rechecked for the hillside criteria during design phase for possible revisions to the plywood sheathing and nailing.

The physical tie between the original adobe building and the reception room is unclear on the construction drawings. Steel straps on the roof may be needed to tie the two structures together. A non-structural crack will probably develop between the two building sections in an earthquake.” (MGE)

g) Adobe Walls Maintenance

(i) Some of the adobe walls need repairs, such as the exterior site walls that do not have a protective stucco finish. It is essential that the adobe bricks not be exposed to adverse weather conditions for any length of time. The adobe bricks should be recoated with a stucco finish. Material shall be the same as revealed in the laboratory analysis of existing materials on site. Historic photos show these walls as having a stucco finish and William Black Jr. does not recall exposed adobe block for the wall finish. He believes these walls also had a stucco finish.

(ii) The historic adobe block was made on site and has a high likelihood of containing some Kumeyaay artifacts. Therefore, any disruption to the existing adobe walls needs to be done in consultation with the Native American monitor.

(iii) Replacement block when needed

(1) Soil: If possible, shall be clean material from documented locations, and well pulverized, and shall contain the same material as existing historic adobe. Material from the site shall not be used due to the presence of archaeological resources on the site.

(2) Sand: Shall conform to ASTM-C-144. Shall be well-graded masonry mortar sand. Sand to be sifted through a No. 8 wire mesh sieve to remove lumps. It shall be clean, free from detrimental acids, alkalis, and salts, and shall be free from deleterious materials.

(3) Water: Should be fresh, clean, potable, and used to form a workable mix.

(4) Hair or Fiber: If used, it should be goat or cattle hair, or pure manila fiber of good quality, ½” to 2” in length, clean and free of dust, dirt, oil, and other impurities.

h) Exterior Stucco

While traditionally historic adobes would have had a sacrificial earthen plaster and lime white wash reapplied every year, the Black residence is a modern era adobe with a cementitious stucco finish. Typically cementitious coatings are problematic on adobes as they trap moisture and do not let the material breath. However, the Black residence shows no such signs of trapped moisture. Therefore, it is recommended that future stucco mixes match the existing stuccos properties.

i) Roofing

Since water damage from a faulty roof is a leading cause of deterioration in an adobe building. Maintaining repairs to the roof are a primary concern.

(i) Replacement roof with rehabilitation, ABB recommends:

(1) “Option 1

Remove the entire existing built up roofing system and expose the decking.
Repair or replace the decking, insulation, and sleepers as/if needed or per the Engineer – Architects direction. Do not disturb the existing beam and plank ceiling materials except as specifically directed by the Architect, where deteriorated. It is acceptable to remove water damaged plaster ceiling material as needed.

Bolt a wood ledger beam to the inside of the existing parapet walls and then attach new roof rafters to span the roof. The rafters can be solid wood or wood trusses, if required, as needed to provide space to run mechanical conduits. It is more economical to install fiberglass batt insulation between the rafter spaces, however, sloped rigid insulation can be placed on the new roof decking, as an option.

The existing roof scuppers and drains should be replaced and striped back into the adjacent roofing system. The raised roof system will necessitate additional extension piping.

For this application, we recommend a Title 24 compliant, Class A, single ply, fully-adhered, white, thermoplastic, 20 year warranty, membrane system be installed on all the low-sloped, non-expose roof areas including vertical surfaces of the parapet walls and terminating – interfacing with the new wall coating. ABB recommends the installation of breather vents for the roof.

- Recommended products for “Option 1” Roofing system:
 - CDX plywood decking – min. ¾” – all edges fully blocked.
 - ¼” Cover board: Securerock by USG, DuraGuard by DensDeck.
 - Min 60 mil roof membrane by Sarnifil; Carlisle; JohnsManville.
 - Roof drains: Thunderbird; Zurn.
 - All roof flashings to be copper.

(2) Option 2
Perform structural upgrade to the existing roof diaphragm as needed. Build new mechanical equipment platforms and re-run pipes and conduits as needed. Prepare roof surfaces and provide acceptable substrate for the application of a spray applied urethane foam and an elastomeric roofing system. (Two or more existing built up roofs will require a removal.)

The spray foam system has an R value of approximately 7 per inch, and it can easily be sloped to drains.

Additional Notes:
The roofing recommendations apply only to those roof areas not intended to be used as roof top deck-patios. The use of roof areas intended to be used as deck-patios is beyond the scope of this report.” (ABB)

(ii) Metal Flashing
The metal flashing should be checked for breaks and damage, and shall be repaired/replaced.

(iii) Gutters and downspouts – repair as needed, replace only if not possible to repair.
(iv) Leaks
While no leaks where reported nor cause visible, it is prudent to conduct annual inspections of the roof to parapet, roof to chimney and roof to all penetration connection points.

j) Roof Framing
(i) Dry Rot
(1) Some deterioration of exposed wood beams was noted. Deterioration of wood should be observed. Where deterioration increases to a point that the supporting beams are no longer capable of supporting the required loads they should be repaired or replaced. Inspection and repairs are recommended at this time for the corbels and beams in the inner courtyard portal. Beams corbels and posts should be re-inspected yearly.
(2) Where dry rot is evident, the wood elements should first be evaluated for repaired with a wood epoxy resin that is to be colored to match the wood. If this option is not feasible then partial replacement of only the rotted portion of the element can be considered.

(ii) Loose Areas and Cracks
Loose areas and cracks around beams and roof rafters and the stucco walls shall be repaired or filled as needed. This may be an ongoing maintenance item if the cracks are caused by the wood beams swelling in the wet season and shrinking in the dry season. The primary concern is to keep water from entering the wall.

k) Chimneys
(i) Structural Integrity
A physical inspection of each chimney shall be reviewed for structural integrity.

(ii) Evaluation of the Flues
Evaluation of the interior of the flues by a licensed contactor, Jim Crawford of Restoration Fireplaces, found that all of the flues have a tile flue lining that appears to be in good condition. The living room fireplace is the only one built with a double flue. Double flue configurations are not recommended and can lead to poor draft characteristics. However, as long as no “smoking” is noted no change needs to occur at this time.

l) Interior Plaster
(i) Repairs of Interior Plaster
a. Repair damaged areas.
b. The differential expansion and contraction characteristics of the wood vigas and plaster coved ceiling have lead to cracks forming between the materials. Patch and caulk as needed.

(ii) Patches
Patches with inappropriate texture or thickness shall be corrected.

(iii) In-wall Conduits and Fire Suppression System Piping
Typically in wall electrical conduits and fire suppression piping are inappropriate. While buried lines are visibly unobtrusive, the expansion ratio of the metal and adobe are incompatible and in the long term is detrimental to the adobe. The lines can also act as water pathways allowing water into the walls and corroding the lines themselves. However, the modern era adobe seems to have no such issues and the buried electrical
conduits, while not up to current electrical standards and rusting, have no compatibility problems with the adobe or interior plaster. (For further information see Chapter 8: Mechanical, Electrical and Plumbing Engineering Report.)

(iv) Clean and Paint all surfaces.

m) Foreign Materials
The addition of foreign materials also plays a large part in restoring and stabilizing a structure. Materials traditionally used for decoration, window frames, roofs, and even floors, can be the most difficult aspect to reconcile. “Adobe will not permanently bond with metal, wood, or stone because it exhibits much greater movement than these other materials, either separating, cracking, or twisting where they interface.”6 These materials are often used, though, for added features and they must be dealt with. This is the case for several additions and restorative measures made to the structure.

n) Doors and Windows
(i) Wood Window Jambs and Sashes
Wood window jambs and sashes are located near the outer one-third of the wall thickness, with plaster returns on the interior and stucco returns on the exterior. Sills are not flashed, so that water draining from the woodwork runs to cracks that form between the wood and earthen plaster abutting it. These joints require frequent maintenance to prevent damage of the walls below the sills.

“The recessed windows and doors currently have a radius upper edge which allows water, running down the wall above the opening, to terminate directly against the window/door unit. This is a special concern as it introduces high volumes of moisture up against the frames and glazing. We recommend the integration of a capillary break that will interrupt the water flow before it strikes the windows. This can be done along with the new cementitious finish coat by making a small groove adjacent to the new sealant joint across the head. This can be done subtle enough as not to impact the existing aesthetics of the adobe walls and will increase moisture protection of the openings.

Recommended Products for waterproofing sealer:
* AquaFlex by Pro-Seal;
* StoGuard by Sto
* Acryl 60 by Thoro Products” (ABB)

(ii) Door Thresholds
Door thresholds are typically low profile, and so subject to water damage where water stands next to the building.

(iii) Repair All Windows
All windows shall be repaired of damaged, missing, or inappropriate materials. Window putty is worn and shall be removed in all compromised areas. All windows shall be made operational and repaint.

(iv) Repair All Hardware
All missing or damaged window and door hardware shall be repaired or replaced in-kind.

6 National Park Services.
(v) Replace All Weather Stripping
The weather stripping around all doors and windows is worn. The weather stripping and door sweep shall be replaced. New weather stripping shall be painted to match the doors and windows.

(vi) Replace Aluminum picture window
In east bedroom replace aluminum window with wood window to match “in-kind” Library picture window.

(vii) Replace Gallery/ Portal windows
Replace gallery/portal windows and doors with revised enclosure design. New design to have more expansive glazing detailed to respect the original posts and corbels of the portal.

(viii) Replace Glazing
Replace existing glazing with tempered or laminate glazing per the California Building Code. The residences original glazing does not have any historic character and its replacement where needed to meet code will not harm the integrity of the doors and windows. Non-tempered or laminate glass can cause a substantial safety issue.

(o) Paint and Stain
After a full paint / stain analysis is done all painted/ stained wood surfaces: door, door jambs, headers, windows, window jambs, wood gates and railings, shall as needed be lightly sanded, primed, and painted/ stained with historically appropriate colored paint/ stain.

See lead and asbestos reports.

(p) Portal Posts, Corbels and Railing
(i) Dry Rot
Some deterioration of exposed wood posts, corbels and railing was noted. Deterioration of wood should be observed. Where deterioration increases to a point that the supporting beams are no longer capable of supporting the required loads they should be repaired or replaced. Inspection and repairs are recommended at this time for the corbels and beams in the inner courtyard portal. Beams, corbels and posts should be re-inspected yearly.

Where dry rot is evident, the wood elements should first be evaluated for repaired with a wood epoxy resin that is to be colored to match the wood. If this option is not feasible then partial replacement of only the rotted portion of the element can be considered

(q) Vigas and Eave Woodwork
In general, vigas and eave woodwork seems to be in fair condition, weathered but with little apparent decay. Where dry rot is evident, the wood elements should first be evaluated for repaired with a wood epoxy resin that is to be colored to match the wood. If this option is not feasible then partial replacement of only the rotted portion of the element can be considered

(r) Wooden Site Gates
Main entry and east patio gates are in poor condition. Where dry rot is evident, the wood elements should first be evaluated for repairs with a wood epoxy resin that is to be colored to match the wood. If this option is not feasible then partial replacement of only the rotted portion of the element can be considered
s) **Fireplace**
 (i) Replace the deteriorated gas log lighters and keys in all fireplaces.
 (ii) In all fireplaces oil and repair or replace stiff or frozen dampers. Replace dampers set too low to create proper smoke shelf.
 (iii) The Living room fireplace, firebox has a crack in the rear from rain damage, repair and repaint fire shield.
 (iv) Master bedroom damper has a flue with steel lintels that have lost some support masonry, repair masonry.
 (v) Barbecue’s blade damper is rusted shut, replace and repair. The wooden sign “It’s later than you think” is a combustible in the hot area and shows some signs of charring. Revise design or placement of sign to prevent further charring.

t) **Cabinetry**
 Any remaining cabinetry to be cleaned, repaired and adjusted as needed. Paint or stain per historic finishes.

u) **Exterior Paving Materials and Interior Flooring Materials**
 (i) **Exterior**
 (1) The octagon shaped Native American inspired tile medallion has some surface spall and settlement cracks. These breaks in the surface appear to be holding moisture and may lead to additional deterioration. This should be studied by an art conservator for repair recommendations.
 (2) The concrete paving at the rear east patio has settled up to three inches and the redwood expansion strips have rotted. Remove concrete, replacement surface and drainage design to be determined.
 (3) The concrete paving at the rear west patio has lifted around the Torrey pine tree this is causing an uneven walking surface and moisture to pool against the house in the location of the living room, and the redwood expansion strips have rotted. Remove concrete, replacement surface and drainage design to be determined.
 (ii) **Interior**
 (1) The majority of the hardwood flooring is camouflaged under carpeting so it is not possible to determine the condition of the floor in these areas. Remove carpeting and repair or replace “in-kind” hardwood flooring as needed. In the living room where the wood plank floor is exposed the floor is in fair to poor condition. The wood plank flooring is an engineered wood that appears to be delaminating, rotting and wearing through the veneer layer in multiple locations. Some of the moisture damage maybe due to the lifted slab from the Torrey Pine’s roots shedding water to pool against the house. Replace in-kind hardwood flooring, as needed.
 (2) The linoleum and vinyl flooring see lead and asbestos reports for abatement procedures. Replacement flooring to be determined.
 (3) Replace floor tile in reception room. Flooring to be determined.
 (4) New commercial kitchen to have appropriate finish to meet health code requirements.

v) **Fire and Security System**
 Recommendations from the Fire and Security Systems Report. (Schirmer)

 (i) **Existing Fire Protection System Evaluation**
 The only fire detection devices in the structure are battery operated local smoke
alarms in the Chancellor’s wing. The smoke alarms may in fact be a part of the wireless security system described below. The building is not provided with automatic sprinkler protection or a fire alarm system.

(ii) Existing Security Alarm System Description
The existing building security system consists of an ADT control panel/auto-dialer, keypads, local alarm sounder, and wireless door and window contacts.

The system includes two control keypads, one for the Chancellor’s residence wing at the south end of the building, and one at the main entry for control of the assembly space in the north wing allowing separate arming and disarming of the Chancellor’s wing.

(iii) Recommendations
The following improvements should be made to the fire protection and security systems of the University House:

(1) Fire Protection Systems
• The existing smoke alarm devices should be removed and replaced in conformance with NFPA 72, Chapter 11, “Single and Multiple Station Alarms and Household Fire Alarm Systems.”
• The entire building should be protected with a wet sprinkler system.

(2) Security Systems
The existing security system appears to generally provide adequate protection for the premises. The following additional documentation should be repaired/gathered to confirm system performance:
• Documentation of all existing protected openings and areas with ADT for evaluation by the University.
• Documentation of all system programming with ADT for evaluation by the University.
• Documentation of all system operational features with ADT for evaluation by the University.
• Documentation of all alarm response procedures with ADT for evaluation by the University.

w) Electrical Analysis
(i) Review of Electrical System (SSE)
(1) The current condition of the electrical system in University House is as documented in the 2004 report (See Chapter 8, Appendix 8B). As indicated in that 2004 report and reiterated here, the state of the electrical system at UCSD’s University House have a real probability of starting an electrical fire or causing electrocution injuries if they are not upgraded.
(2) Due to the aggressive corrosiveness of the salt spray environment around University House, corrosion of all metal components is considerable advanced from five years ago. Also, the 2007 version of the California Electrical Code is more stringent than the 2004 version.

(ii) Replace All Wiring
(1) Conduit and Wiring Installation
(a) All underground conduits for utility connection, landscape lighting, site lighting, and feeds to the pool equipment panel need to be Schedule 40
PVC conduits and fittings.

(b) All metallic conduits and junction boxes installed exposed on the roof or outdoor wall surfaces should be painted with epoxy paint to help the new installation resist corrosion from the marine environment. Architect will pick color to blend into the surroundings.

(c) Liquid tight flexible conduit and fittings shall be used for the replacement of BX cables installed exposed outdoors.

(d) All conduits installed vertically in the adobe walls should be concealed and PCV type. Approved conduit PVC to metallic transition fittings should be provided above the ceiling.

(2) Wiring Devices

(a) Ground Fault Circuit Interrupter (GFCI) outlets should be provided in bathrooms, kitchens, wet bar sinks, garage, crawlspace and all outdoor locations.

(b) All branch circuits that supply 125 Volts, 15 Amp or 20 Amp receptacles installed in bedrooms should be protected by an Arc-Fault Circuit Interrupter.

(3) Service and Utility Feed

(a) The existing service for University House is 200 Amps. The 2004 Report recommended upgrading to 400 Amps. However, the 2004 Report was for heating and no air-conditioning. With current designs and code requirements, Salehi Engineering, Inc. recommends upgrading to a 600 Amp. 240 Volt, single phase, 3 Wire Electrical Service upgrade.

x) Plumbing Analysis

(i) Piping (SSE)

(1) As was stated originally in the 2004 report, the majority of plumbing fixtures, equipment, and piping have reached the end of both its physical life and needs replacement.

(2) As stated in the previous report, some of the water piping is in newer copper piping—which can be retained. However, the majority of the piping is in galvanized piping. All of the existing galvanized water piping needs to be replaced with new copper piping.

(3) A grease interceptor will be required to be installed. Kitchen waste lines should be minimum of 4 inches or greater.

(4) All of the existing natural gas piping are rusted (as captured in the photo below) and need to be replaced.

(ii) Domestic Water Heater

(1) An earthquake resistant seismic strap is required, by code, to be added to the domestic water heater on the lower and upper 1/3rd of the unit. The strap for the lower 1/3rd is missing.

(2) Alternatively domestic hot water could be provided through a heat exchanger connected to the new boiler.

(iii) Fixtures

Those sinks, lavatories, and water closets which are original equipment need to be replaced with new fixtures. While these can be historical in appearance, all fixtures need to be of the water saving type.
y) Mechanical Analysis (SSE)
 (i) Increased Insulation Levels
 In order to increase insulation levels in the most cost effective manner, with the least amount of damage to the building, it is proposed that a layer of R-30 rigid board insulation be added on top of the roof throughout the building. (It is suggested that the engineer perform life cycle analysis (economic justification) to compare annual energy consumptions and equivalent dollar values for clarification and decision making.)

 (ii) Central Plant/Four Pipe System
 1) New Chiller
 The cooling will be provided by two new chillers which will be mounted on the roof. We will coordinate the Architect to make its appearance as low key as possible.
 2) New Boiler
 The heating will be provided by a new boiler. This will be installed on the roof and free up useful space in the basement and take the place of the existing boiler. New pumps, accessories, and pipes will also be installed at this time. We will coordinate with the Architect to make its appearance as low key as possible.
 3) Air Handlers
 Four pipe air handlers will be considered, one for each temperature control zone. A set of two pipes will lead to and from both the chiller and the boiler

 (iii) Carbon Dioxide Sensors
 In the major function rooms, carbon dioxide sensors will be provided so that demand control ventilation can be used. This ensures that large reception groups have adequate fresh air. The Four Pipe Fan Coils will have 100% outside air economizers so that they can use the fresh air at moderate temperatures as much as possible.

 (iv) Kitchen Exhaust
 The University House has a commercial quality kitchen. This includes a grease hood over the range top. However, the associated rooftop exhaust fan is not rated for use with grease. This exhaust fan needs to be replaced with an exhaust fan which is certified for use with grease hoods. In addition, the roof curb height for this fan needs to be increased to 18” above roof level and must be vented.

 (v) Make-up Air Unit
 For proper operation of the Kitchen Exhaust, a dedicated Make-Up Air Unit needs to be provided. This will help control smoke and odor levels in the kitchen and prevent bringing in excessively cold air in the winter. Most importantly, it will prevent the creation of a vacuum condition in the house.

 (vi) Clothes Dryer Vent
 Current code dictates that a booster fan be added to the clothes dryer vent because of the vents’ excessive length. (Per code: any clothes dryer vent can only run 14 feet with one elbow)

 (vii) New Air-Conditioning Systems
 The proposed air-conditioning system for University House is both cost effective to build and operate. It is also easy to adapt should the usage of any space or room in the house change in the future.

The 2004 Report recommended that a heating-only system put in. It is our
recommendations that the new system include air-conditioning. For high level receptions, the large number of attendees generates a large amount of heat which requires air-conditioning in order to be comfortable. Also, almost every year there is a period of 7-10 days of Santa Ana weather where the house will not be comfortable without air-conditioning.

The engineering team at Salehi Engineering, Inc. considered a number of potential systems for University House. Several of the finalists were modeled on the computer using an hour-by-hour sun path simulation. A summary of the results of the energy simulation of the winning idea is shown in the next section. The final section is a proposed layout for the air-conditioning components on the roof.

It was decided that the best system for this application would be a four-pipe fan coil system. Two of the pipes will supply and return heating hot water to and from a new boiler. The remaining two pipes will supply and return chilled water to and from a new air-cooled chiller. Associated pumps will be needed to move both the heating hot water and the chilled water around the building.

The new chiller and boiler as well as most of the associated piping will be run on the roof of the house. See roof schematic at the end of this report. This distribution path will have the least impact on the historical appearance of the house.

University House would be divided into 14 thermal zones, each with individual thermal control. The system is flexible enough to provide heating or cooling in any space.

(viii) Kitchen Requirements (FSDG)

1. The kitchen and the associated spaces should be designed per the regulations of Health Department.
2. All kitchen equipment should be of commercial grade.
3. All counters and sinks should be stainless steel.
4. Provide a commercial exhaust system design which meets both Health and Mechanical codes.
5. All finishes should be updated to meet new Health Dept. standards.
6. The new kitchen and associated spaces layout should incorporate new functions such as flow of traffic & serving styles and architectural concepts.
7. Mop sink in storage area

z) Basement equipment

Remove basement forced air systems, boilers and laundry.

2. Preventative Maintenance

Maintenance of any adobe building, a historic building, and a building visited by hundreds requires vigorous attention. IS Architecture is aware of the University staffs extensive efforts to maintain the building.

Maintenance is an ongoing continuous process with historic structures. The four elements of Planned Maintenance are: Housekeeping, Integrated Pest Management, Routine Maintenance, and Cyclical Maintenance. The on-site maintenance staff, in their daily housekeeping duties, is the primary line of defense to identify maintenance issues before they become maintenance problems. Maintenance staff should be thoroughly trained in the identification of potential problems such as moisture intrusion, pest infestation, and organic growth. Routine Maintenance items occur on less than a year schedule and are regular assigned duties typically performed by in-house staff. Routine
Maintenance includes such items as cleaning gutters, landscape maintenance, lubricating hardware, inspecting fire alarm systems or extinguishing equipment, and maintaining fire suppression systems and equipment. Cyclical Maintenance is tied to the life cycles of materials and assemblies, a defined task or major budgeted expense. Cyclical Maintenance includes roofing, painting, repointing mortar, repaving garden walkway surfaces, and mechanical equipment replacement. The most important aspect of the process is recognizing that deferred maintenance is not an option for historic resources.

a) Cyclical Maintenance
 (i) Adobe, Plaster, Whitewash
 Adobe structures require yearly or twice yearly maintenance.
 (1) Routinely reviewing the building for needed adobe repair.
 (2) Routinely reviewing the building for cracked and chipped plaster; repair as needed.
 (3) Watch for potential moisture sources, correct as quickly as possible.

 (ii) Paint
 (1) Cyclical painting of all painted wood elements.

 (iii) Roofing
 (1) Cyclical examination of the roof for signs of ponding or poor drainage.
 (2) Cyclical cleaning of the roof from Pine needles or other debris.

b) Routine Maintenance
 (i) Observation
 As building components wear out or are in need of maintenance, staff should report items to the responsible parties for correction. Items should not be left unaddressed. Results of neglect may not be apparent immediately.

 (ii) Site Drainage, Landscape
 (1) A continuous and positive draining grade is to be maintained around the building. The water drainage from the roof down to the grade will create depressions at the building, producing an inappropriate drainage patterns. Routinely, two times a year, once prior, and once after the rainy season, the building grade shall be walked and depressions shall be hand compacted to bring back the appropriate grade and positive drainage.
 (2) All drains shall be checked four times a year and specifically prior to the rainy season to make sure they are free flowing. This inspection should include the area drains in planting beds, in the courtyard and the rear patios.

 (iii) Housekeeping
 Daily Procedures and Cleaning
 The daily operation of the building needs to administer how the building is taken care of. The Minnesota Historical Society Historic Housekeeping Handbook, June 2000 is a good source for concrete guidelines on housekeeping for a historic home.7

 (iv) Integrated Pest Management
 Treatment of Termite Infestation
 A major concern both cosmetically and structurally is pest infestation. The adobe

provides an excellent burrowing material, similar to the earth itself, and the wooden features provide ample food sources. Termite droppings have been observed between the dining room and the reception room. The extent of potential damage may currently be hidden in door/window jambs and roof framing throughout the structure. The extent of the termite damage cannot be gauged without further, more destructive testing. The existing conditions can be treated in order to retard the effect of the infestation.

When the extermination is completed, it is important that all aspects of the work be done by an adobe specialist and supervised by a preservation architect. This is most important when it comes to pest control in adobe structures. Chemicals used on other materials can be absorbed into the porous adobe mixture. Once this occurs, the chemical will quickly disintegrate the materials in the walls. Also, the chemicals may be stored in the wall and rinsed out into the surrounding soil during rain thus contaminating the ground.

3. Other Interventions, Analyses, or Monitoring that may be Required or Desirable

a) Universal Access

Technically the University House is primarily a private residence and as such is not required to meet accessibility standards. However, an effort should be made to include principals of universal design where ever possible. Accessibility deficiencies should specifically use the California Historic Building Code (CHBC) for criteria.

(i) Main Entrance

The main entrance can be made accessible with the use of a portable access ramp. Or in an inconspicuous location the brick pavers of the portal could be altered to create a subtle ramp. If the threshold is an issue a rubber or aluminum wheelchair threshold ramp can be installed.

(ii) Alternative Entrance

The CHBC does allow for an alternative entrance within 200 feet of the main entrance for disabled access. The current alternate route is less than 200 feet; from main entrance to dining room entrance a total of about 30 feet.

(iii) Interpretive Placard

The observation lookout at the point of the bluff edge is inaccessible. An interpretive placard should be considered to provide alternative access to the areas.

(iv) Stair Handrails and Guardrails

Every stair configuration does not have a hand rail that meets grasping requirements. At every stair a new smaller circumference hand rail and possibly rail post should be considered.

- Stair to basement, interior and exterior
- Stair to barbeque deck
- Stair to rooftop deck
- Stair from west patio to pool
- Stair from service yard to north portal
- Guard rail for east patio retaining wall
(v) Accessible Restrooms
The proposed rehabilitation creates separate male and female accessible restrooms.

b) Additional Analyses or Monitoring
Additional investigation is suggested to further enhance the preservation and knowledge of University House.

(i) Archaeology
Prior to any work requiring the disruption of any existing grade an archaeologist shall review the area for potential information. Based on the findings of the review, an archaeologist or Native American monitor may be required to monitor the work.

(ii) Paint Analysis
A full investigative paint analysis is recommended to recapture historic paint schemes.

(iii) Materials Conservation
While a visual inspection was completed, a conservation based examination of the garage wall mural, canvas art, tile art or octagon medallion was beyond the scope of this report. Such laboratory testing was beyond the scope of the project. A firm such as Griswold Conservation can be hired:

1. Field examination of components.
2. Remote sensing survey to include moisture mapping, infrared thermography, to determine moister transport and retention patterns related to ongoing deterioration, etc.
3. Collection of samples of historic materials, degradation products, insect or rodent infestation debris, etc. for examination at a laboratory.
4. Microscopic examination and possible spot testing of samples at a laboratory, to help determine nature and condition of materials and deterioration mechanisms.
5. Written report detailing findings, recommendations for further investigation if required, and development of treatment, maintenance and monitoring recommendations. Representative digital images and diagrams will illustrate the report.

A report of this type is strongly recommended to give a good long term look at the life of the material, as well as a better understanding of the materials.
VII. Works Cited

Island Architects. UCSD University House Renovation Investigative Study. Rep.

JRP Historical Consulting. Historical Resources Inventory and Evaluation Report for the University House (Chancellor's Residence), University of California, San Diego, La Jolla, San Diego County, California. Rep.

Kawasaki, Theilacker & Associates, UCSD University House Addition, September 10, 1986

Lumpkins, William. Modern Spanish-Pueblo Homes.

Nasland Engineering, Detailed Project Program University House- Site Analysis, June 24, 2009

National Register Registration Form, 4/2007; revised 10/2007; amended 05/05/09 (pending), William Black House / SDM-W-12 Locus A CA-SDI-4669, San Diego County, California

Ninyo & Moore. Preliminary Geotechnical Evaluation Proposed University House 9630 La Jolla Farms Road La Jolla, California. Rep.

VIII. Appendices

A. Preservation Brief 17 (16 pages) Page 127
Architectural Character Identifying the Visual Aspects of Historic Buildings as an Aid to Preserving Their Character

B. Preservation Brief 18 (10 pages) Page 143
Rehabilitating Interiors in Historic Buildings

C. As Built Drawings (10 pages) Page 153
To be inserted.

D. Architectural Wall Sections (9 pages) Page 155
Island Architects 2004

E. Limited Archaeological Excavations Page 165
At Sdi-4669 (Sdm-W-12a) In Advance Of Geotechnical Coring
Confidential appendix, report is available to qualified individuals on a request basis.

F. Proposed Architectural Rehabilitation Designs (14 pages) Page 167

G. Historic Documentation – UCSD Archived Drawings (53 pages) Page 181