1873 College of California, which would become University of California campus, founded in Berkeley

1892 John Muir helps in the formation of the Sierra Club

1912 Scripps Institution of Oceanography founded in La Jolla

1916 San Diego architect Irving Gill completes the Scripps Residence (later the Museum of Contemporary Art) in La Jolla

1945 Case Study House Program sponsored by Art & Architecture Magazine begins, becoming a milestone in the development of Southern California architecture

1959 Regents of University of California approve new campus to be built in San Diego

1960 First nationally recognized student civil rights demonstration in Greensboro, North Carolina

1960 Redevelopment of Downtown San Diego takes shape with the Modernist design for the Civic Center by Samuel Hammill

1962 Silent Spring, by Rachel Carson, is published, marking the beginning of the environmental awareness movement in the United States

1963 John F. Kennedy assassinated in Dallas, Texas

1963 Long Range Development Plan, the academic and administrative plan for the future growth of the UCSD campus, is released

1963 Robert E. Alexander's masterplan for the physical form of the campus is released

1963 Louis Kahn completes his influential Modernist building for the Salk Institute near UCSD in La Jolla

1964 Free Speech Movement protests begin at University of California, Berkeley
1964 The United States enters the Vietnam War
1964 UCSD has its first graduating class from Revelle College
1965 John L. Stewart is appointed founding provost for the Second College, later named John Muir College, which is yet to be built
1965 John Galbraith convenes Warner Hot Springs retreat to discuss the masterplan of Second College
1965 Robert E. Alexander resigns as Consulting Architect for UCSD and A. Quincy Jones is hired to replace him. Robert Mosher is the Executive Consulting Architect for Second College
1966 John Muir is chosen as the name for Second College
1967 First class enters John Muir College
1967 San Diego Stadium opens in Mission Valley, designed by Frank L. Hope & Associates in the Modern style
1968 John Muir College holds first graduation
1968 Assassinations of Martin Luther King and Robert F. Kennedy
1968 Construction begins at John Muir College
1969 People’s Park tragedy at University of California, Berkeley
1970 Two Vietnam-related protests occur at UCSD, including one in which a student sets himself afire
1970 UCSD’s Central Library, later Geisel Library, designed by William J. Pereira, opens
1971 John Muir College construction is complete
1976 UCSD disbands many campus planning positions, resulting in several years of uncoordinated growth
1989 SOM completes new masterplan for UCSD
2008 John Muir College celebrates 40th Anniversary
The following section describes the buildings and open spaces in the historic campus core. More detailed information about these resources may be found in California State Department of Parks and Recreation 523 (DPR) forms in the Appendices.
CHARACTER DEFINING FEATURES

The masterplan for John Muir College was intended to unite the buildings and landscape with an overarching architectural identity. This was accomplished by the creation of a massing strategy, the dictation of several repeating elements, and theory-based design considerations. These main unifying elements are identified pictorially below.

Building:
1. Buildings are comprised of blocky massing and accentuated, often asymmetrical, volumes.
2. Rectilinear rather than curvilinear building features are exclusively used, with voids and solids overtly expressed.
3. Design of buildings is organized around the repetition of modular patterns, including towers, floor levels, and the repetition of the “waffle” pattern.
4. Precast concrete with expressed board-form is the primary building material. Wood is used as accent on Stewart Commons and some hand railings.
5. Fenestration of residential buildings is mostly operable, metal-framed casement windows. Window siting is both to balance solid building mass and allow adequate light into living spaces.
6. Fenestration of academic buildings is based on a 2-foot module. The shape is a narrow, vertical rounded rectangle.
7. Building entrances front on outdoor spaces and complement external circulation scheme. These pedestrian-scaled entrances contribute to the sense of spatial enclosure in interior courtyards.

8. Walkways, arcades, and courtyards link buildings together, similar to a traditional academic campus.

9. Buildings are designed to incorporate natural setting. For lower buildings, this means harmonious blending with natural setting, and capturing of views with taller buildings.

10. Rooflines vary from building to building. They are either irregular or a flat plane. Stewart Commons has a pyramid atop its otherwise flat roof with broad cantilevers over entrances and balconies.

Landscape:

1. Landscape strategy in academic portion of historic campus core consists of hardscape of repeating geometric paving materials, and a softscape of native plants.

2. Landscape strategy of residential portion of campus uses more organic, undulating forms of hardscape that respond to the topography of the land.

3. Planter boxes are included both in central spaces and along building entrances to tie buildings and plantings together, following the dictated architectural aesthetic.
STEWART COMMONS

Architect: Dale Naegle
Year Designed: 1968
Historic Name: Muir Commons

Stewart (Muir) Commons is the central gathering building of John Muir College and is located in the center of the historic campus core. It houses the dining hall, small shops, and common lounge areas. The lowest of the buildings of the Muir campus, it complements the landscape, with entrances on various levels and outdoor spaces reaching into its surroundings. In this way it plays a crucial role in the circulation of the campus.

The two-story building is constructed of concrete masonry and concrete frame with a structural wood roof featuring cantilevered overhangs—mostly over entrances and outdoor areas.

Architect Dale Naegle chose the more natural materials for Stewart Commons to offset the concrete of the rest of the campus. He found this material suitable to the desired atmosphere of a student center.

Muir Commons was officially renamed Stewart Commons in honor of founding Provost John L. Stewart in 1998.
Tenaya Hall is one of the two residential high-rise towers at Muir College. It was originally constructed for female residents but now is one of two first-year student dorms. The 8-story building is H-shaped in plan and features 2-story common areas that link floors in the interior. It is located on the northern edge of the historic campus core, with the southern facade facing the lower quad.

Like the majority of the buildings on Muir campus, the primary material of Tenaya Hall is board-formed concrete. This is complemented by painted concrete blocks. Varying projecting bays, balconies, and casement windows add visual interest to the building.

The name Tenaya is derived from Tenaya Lake in the Tenaya Canyon of Yosemite National Park. The elevation of the lake is 8,150 feet above sea level. The name was chosen by John Stewart after he and his wife Ruth hiked the area.
Tioga Hall is one of the pair of residential high-rise towers at Muir College. It was originally constructed for male residents but now is one of two first-year student dorms. The building is H-shaped in plan with 11 stories and features 2-story common areas that link floors in the interior. It is located on the western edge of the historic campus core, with the eastern facade facing the lower quad. Due to its location and height, the building offers great views of the Pacific Ocean, especially from the Mandeville Suite on the eleventh floor.

The primary material of Tioga Hall is board-formed concrete, complemented by painted concrete blocks. Varying projecting bays, balconies, and casement windows add visual interest to the building.

The name Tioga is derived from Tioga Pass in the Sierra Nevada. The name was chosen to evoke the elevation of the pass, which is 9,943 feet above sea level. The name was chosen by John Stewart after he and his wife Ruth hiked the area.
The Tuolomne (Muir) Apartments are the residential halls for the upper classmen at Muir College. The apartments consist of nine 4- and 5-story residential buildings, connected by open galleries and walkways. The apartments are located on the southwestern corner of Muir College, their northern facade facing the lower quad. Their lower height and extensive landscaping create the appearance of a dense clustering of buildings that hugs the surrounding landscape.

The flat-roofed buildings are constructed of board-form concrete with metal accents in the balcony railings and stair railings. The form of the windows continues the casement, metal-framed style of the high-rises.

The name Tuolomne is taken from the Tuolomne River in Yosemite. Like the other residential buildings at Muir College, the name was chosen to contribute to the theme of geographical features of Yosemite, loved by John Muir and John Stewart.
The Humanities and Social Sciences Building (HSS), is located in the academic cluster of Muir College, facing along the southern edge of the historic campus core. The building form consists of a tower with two flanking wings. The tower is 8 stories and the wings are 2 stories each. The basement level, which is visible south of the historic campus core, appears as a solid void, as it serves as a ground floor circulation area. The building connects to the central campus courtyards on the first floor.

HSS employs an interpretation of the architectural vocabulary dictated by Robert Mosher in the architectural masterplan. The primary material is board-formed concrete, with repeating modular forms and rounded rectangular windows. The three buildings of HSS are connected to each other and the adjacent courtyard spaces by arcades, bridges, and covered balconies. The arcades match the “waffle” pattern employed throughout the campus.
BIOLOGY

Architect: Liebhardt & Weston
Year Designed: 1968
Historic Name: Building 2B

The Biology Building at Muir College forms the eastern edge of the historic campus core. The building, which is a single rectangular structure, is oriented perpendicularly to the eastern entrance, creating a visual gateway as Muir College meets the center of the University. On the western facade, Biology faces the central academic courtyard and is connected to the Applied Physics & Mathematics building on its northern facade by a covered arcade. The building houses mostly laboratories with offices and classroom spaces.

Biology employs the academic architectural vocabulary dictated by Robert Mosher in the masterplan. The primary material is board-formed concrete, with a repeating modular forms and rounded rectangular windows. Biology is unique for its alternating vertical bays of solid concrete juxtaposed with window bays. Visual interest is also added by fluted columns that occur between bays.
APPLIED PHYSICS & MATHEMATICS

Architect: Robert Mosher
Year Designed: 1966
Historic Name: Building 2A & 2A’

Applied Physics & Mathematics (AP&M) is the only building on Muir campus designed by Robert Mosher, who also did the architectural masterplan for Muir College. The building was one of the first designed and thoughtfully employs the overarching architectural vocabulary that unites the academic buildings. It especially makes use of the “waffle” slab, which is repeated as cornice and cantilever, and to express floors. The primary material is board-formed concrete, with a repeating modular form and rounded rectangular windows.

AP&M is the largest of the academic buildings at 165,000 square feet. It is 7 stories in height and consists of two perpendicular, rectangular buildings attached by a covered passageway at each story. The southern building is the larger of the two. Its southern facade deviates slightly from the iconic expressed grid of AP&M, featuring five vertical towers. This building is an icon of Muir College—its verticality and bold architecture creating an image for the college.
McGILL & MANDLER HALLS

Architect: Frank L. Hope & Associates
Year Designed: 1967
Historic Name: Building 2C & 2C'

McGill and Mandler Halls are two separate buildings but function as a whole. Mandler is the lower of the two at 2 stories and forms the northern edge of the historic campus core. McGill, at 5 stories, faces the interior courtyard. The two buildings are the most boxy in massing of the academic buildings at Muir, but they maintain the architectural motifs of repeating modules, narrow rounded windows, board-form concrete, and expressed interior function. The two buildings are connected by covered passageways on the upper stories. An arcade that passes between McGill and AP&M forms one of the main points of entry into the Muir campus.

McGill and Mandler house the Psychology department. George Mandler was the founding chair of the department and currently is a Professor Emeritus. William J. McGill was also a founding faculty member, who later served as Chancellor of UCSD before returning to Columbia University in New York.
Katzin Courtyard, or the Upper Quad, is the eastern quad of Muir College. It was dedicated to Miriam E. and Jerome S. Katzin in 1996. It is located between Applied Physics & Math, Humanities & Social Sciences, and Biology. It features a raised planter and employs a rectilinear, block, pavement pattern with mature shade trees and green space.

Middle Quad is located between McGill Hall, Stewart Commons, and Ledden Auditorium. It features a central planter and is consistent with the rectilinear paving pattern of the academic quads. Graffiti in the concrete from 1971 on this central planter marks the year of this quad’s completion. Mature trees, including eucalyptus and melaleucas, make this a shady quad.

Lower Quad is the landscaped area situated within the residential quad, with Stewart Commons on the east. It is at a lower grade than the academic quads, and is a less constructed, more undulating design. It has less tree cover than the academic quads, and creates an open environment between the various scales of residential architecture.
THE ARCHITECTS OF MUIR COLLEGE
Robert Mosher began practicing architecture after attending school at The Art Center, USC, and the University of Washington. His early career included years spent in San Diego and Los Angeles, but he eventually returned to San Diego to stay. While in Los Angeles, Mosher met Roy Drew, whom he encouraged to move to San Diego and, in 1948, the two began their practice together. Throughout this partnership, however, the two architects mostly worked on projects separately.

Mosher’s early career in San Diego was a combination of various Navy and Marine Corps commissions, and work in the office of William Templeton Johnson. This career took a turn when his family became owners of the Green Dragon Colony, an historic artist colony, in 1944 and Mosher was able to design several new buildings on the site. Through these buildings, Mosher was able to demonstrate his skill in designing naturalistic, humanistic architecture and his understanding of challenging sites. Around this time, residential growth and wealth were on the rise in San Diego, and Mosher received commissions to design homes for several prominent San Diegans.

After a brief stint in New York at House Beautiful magazine, Mosher returned permanently to San Diego and his portfolio included larger commissions for significant institutions. These include the masterplan for UCSD’s Muir College, buildings at San Diego State and UCSD, a wing of the San Diego Fine Arts Gallery, and the design for the Coronado Bridge. Most of his work, though, was in La Jolla, where he lived and worked through most of his career and is still a resident today.
Dale Naegle grew up and was educated during the premier period of the Midcentury movement. A native of the Los Angeles region, he spent his adolescent years in Santa Barbara and was always interested in music and architecture. Pursuing his passion, he attended University of Southern California’s architecture program, and graduated in 1954 under the tutelage of A. Quincy Jones and William Pereira. He soon left Los Angeles for La Jolla, however, and began a practice there, which he still heads today.

Naegle’s approach to architecture was to create spaces that were beautiful, usable, and comfortable to inhabit. They also had to create and contribute to a sense of place, complementing their surroundings and maintaining the character of a neighborhood. Incorporating these principles, Naegle was able to introduce a Modernist vocabulary and use materials that were appropriate for the function and location of his buildings. His work in San Diego consists mostly of residences in La Jolla and elsewhere. The collection of buildings he designed for Muir College are some of his most iconic. Tioga Hall, the taller of the residential buildings, can be seen from La Jolla Cove and is a major landmark of the UCSD campus.
Liebhardt & Weston was the partnership between Frederick Liebhardt and Eugene Weston III. Liebhardt came to San Diego after studying at the University of Denver and at the Taliesen Fellowship with Frank Lloyd Wright in Wisconsin and Arizona. In San Diego he worked with both Lloyd Ruocco and Loch Crane before establishing his own practice. Throughout his career, he worked with many other notable local Modernists, designing mostly residences.

In their partnership, these architects created some of the most influential local architecture of the midcentury. Their designs were always adapted to the site, using principles of organic forms and local materials. Their later work consisted of larger projects, including a great amount of work at SIO and UCSD. They were the architects for the Natatorium and Gymnasium at UCSD. Their work, seen across the City, is representative of this notable time of San Diego’s growth.
Richard G. Wheeler & Associates was a firm of great repute in the mid-twentieth century in San Diego. Wheeler, the son of an architect, began his study of architecture at an early age and completed his architectural degree at the University of California, Berkeley. He always practiced in his native San Diego, however. His philosophy was to design buildings that were appropriate for their use and did not simply copy traditional forms. Accordingly, his firm's designs are all original to their time period and uniquely San Diego in their material and style.

Wheeler's office began doing mostly residential architecture but quickly moved on to larger commissions. This included a series of Benbough Professional Buildings in Point Loma and the well-known San Diego Gas & Electric (SDG&E) Building downtown in 1968. Wheeler's practice also designed the Westgate Hotel—another landmark of the city skyline—in 1970. The SDG&E building was the seminal work of Wheeler's 40-year career, during which he would employ as many as 40 designers and make a great impact upon the architectural form of the City.
Frank L. Hope & Associates was a prominent architecture practice in San Diego in the 1950s through the 1970s. They were responsible for the design of many private residences around San Diego, as well as key city institutions such as museums and banks. The firm’s most well-known project is the design for San Diego Stadium—now Qualcomm Stadium—in Mission Valley. Another iconic building done by the firm is the Marriott Hotel & Marina (formerly the Intercontinental Hotel). Important civic works include the Timken Museum in Balboa Park, the Cabrillo National Monument Visitors’ Center in Point Loma, and the Penguin House at the San Diego Zoo. The firm also completed a large number of commercial and office buildings in downtown San Diego in the 1960s and 70s, which stand as a tribute to the firm’s wide range of influence during the decades of significant growth in the City.

Frank L. Hope & Associates passed from the hands of Frank L. Hope to his sons Frank Jr. and Charles Hope, and eventually to Chuck Hope Jr. who founded Hope Engineering in 1993. Located in downtown San Diego, the firm continues the tradition of excellence established by previous generations and continues to shape the built environment of the region.
Wimmer & Yamada Landscape Architects, ASLA was one of the first prominent landscape architecture firms to emerge in San Diego. It was responsible for many premier projects in the Modern style beginning in the 1950s, and continues to practice in the present day. The practice was established by Harriet Wimmer in 1954, and Joseph Yamada joined her as partner in 1960 to form the present firm. Harriet Wimmer was a native San Diegan who initially designed gardens as a hobby. She was inspired by the Panama-California Exposition that created the grounds of present-day Balboa Park. She did not formally practice until age 51 when she opened her own office.

Joseph Yamada, also a native San Diegan, was traditionally trained in landscape architecture, studying under Garrett Eckbo, Thomas Church, and Lawrence Halprin at the University of California, Berkeley. Yamada began working as a draftsman under Wimmer after graduation, and after just a few years working for the School District of San Diego, became her partner in 1960. Yamada had a knack for land forms and hardscape feature design, while Wimmer’s eye was for plant groupings. Together they made an ideal pair and were chosen to design many landscapes to complement Modernist buildings of the day. The firm still practices under the name Wimmer, Yamada, and Caughey (with Pat Caughey as current principal in charge) and maintains a consistent portfolio of work in and around San Diego.